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Abstract. Geometric Algebra makes it possible to formulate simple spinor equations of motion
for classical particles and rigid bodies. In the Newtonian case, these equations have proven their
value by simplifying orbital computations. The relativistic case is not so well known, but it has
new and surprising features worth exploiting, including close connections to quantum mechanical
equations. The current status of spinor particle mechanics is reviewed, and directions for extention
are pointed out.
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1. INTRODUCTION

Geometric Algebra brings a host of new insights and computational techniques to
mathematics and physics. Many of them follow from a clarification and simplification
of the spinor concept. Few mathematicians and physicists realize even yet that spinor
methods can breathe new life into that most venerable branch of mathematical
physics—particle mechanics. This paper shows how.

After a brief introduction to Geometric Algebra in Section 2, Section 3 highlights
some advantages of the Algebra in Newtonian orbital mechanics, in particular, con-
ceptual and computational simplifications that have recently been incorporated into
software for government and commercial space programs.

Section 4 introduces the Geometric Algebra of spacetime. Then Section 5 re-
views the remarkable spinor solution to the relativistic Coulomb problem and sug-
gests extensions of the method. Most notable is the extension of the nonrelativistic
Kustannheimo-Stiefel equation to the relativistic case.

Finally, Section 6 outlines a spinor approach to gravitational motion and preces-
sion in a new gauge theory of gravity.

2. GEOMETRIC ALGEBRA OF EUCLIDEAN 3-SPACE

The material in this section and the next has been treated at length in [1], so we can
be brief. We represent positions in the “Physical Space” of Newtonian mechanics by
vectors in a 3-D Euclidean space E3. The Geometric Algebra G3 for this space is an
associative algebra over the real numbers generated by defining a geometric product
on E3 with the property that the square of any nonzero vector is a non-negative
scalar. Thus, for any vector a,

a2 = |a |2 ≥ 0 , (2.1)
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where the scalar |a | ≥ 0 is the magnitude or modulus of a. It follows that the
geometric product ab of two vectors admits the decomposition

ab = a · b + a ∧ b , (2.2)

where
a · b = 1

2 (ab + ba) (2.3)

is the usual Euclidean inner product, and

a ∧ b = 1
2 (ab − ba) (2.4)

is the outer product.
Let {σk; k = 1, 2, 3} be a “right-handed” orthonormal basis in E3. It is related

to the righthanded unit pseudoscalar i by

σ1σ2σ3 = i . (2.5)

Duality in G3 is defined as multiplication by i. This can be used to define the cross
product a × b of conventional vector algebra as the dual of the outer product; thus

a × b = i(b ∧ a) = −i(a ∧ b) . (2.6)

A generic element M of G3, called a multivector, can be written in the expanded
form

M = α + a + ib + iβ , (2.7)

where α and β are scalars, and a and b are vectors. The reverse M† of M can be
defined by

M† = α + a − ib − iβ . (2.8)

The modulus of M is a non-negative (real) scalar |M | defined by

|M |2 = 〈MM† 〉 = α2 + a2 + b2 + β2 , (2.9)

where 〈 . . . 〉 denotes scalar part.
A multivector U with the expanded form

U = α + ib (2.10)

is a quaternion. We refer to it as a spinor if it is used to represent a rotation, as in

r = Uσ1U
† = rr̂ , (2.11)

where r̂ is a unit vector. This equation determines a parameterization of vectors
in E3 by spinors. It describes a rotation of a fixed “reference vector” σ1 into the
direction r̂, along with a dilation by

r = | r | = |U |2 . (2.12)

When the spinor U is normalized to unity, it is called a rotor.
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3. NEWTONIAN ORBITAL MECHANICS

Let r = r(τ) be the orbit of a particle (of unit mass) with the Newtonian equation
of motion

..
r = −kr̂

r2
+ f , (3.1)

where the overdot indicates differentiation with respect to time τ , which, for the
nonrelativistic case, we identify with coordinate time t. The first term on the right
side of (3.1) represents either the Coulomb force of a fixed point charge or the
Newtonian graviational force of a point mass, depending on the coupling constant
k. We will refer to f as the perturbing force.

The angular momentum (bivector) L is defined by

L ≡ r ∧ ṙ = r2r̂ ˙̂r . (3.2)

We can solve (3.2) for

˙̂r =
r̂L

r2
= −Lr̂

r2
. (3.3)

This determines a decomposition of the velocity ṙ into radial and rotational parts:

ṙ =
(
ṙ +

L

r

)
r̂ , (3.4)

with a corresponding decomposition of the kinetic energy given by

ṙ2 = ṙ2 +
�2

r2
, (3.5)

where � ≡ |L |.
From (3.1) we obtain

L̇ = r ∧ f . (3.6)

For the time being we assume that f = 0, so that

L = � i (3.7)

is a constant of the motion specifying a unit bivector i for the orbital plane. Multi-
plying (3.1) by L and using (3.3) we find immediately that

Lv − kr̂ = ε (3.8)

is another constant of the motion. This constant is peculiar to the inverse square cen-
tral force. It determines the direction ε̂ of the orbit’s major axis and the magnitude
ε = | ε | of its eccentricity, so it is appropriately dubbed the eccentricity vector.

From the two constants of motion L and ε, all properties of the orbit can be
found algebraically without integrations. Geometric algebra facilitates the algebraic
manipulations considerably. To illustrate this, we derive the deflection formula for
Coulomb scattering. Let v = ṙ be the asymptotic initial velocity at τ = −∞, and
let v0 = ṙ0 be the velocity at the point r0 of closest approach (pericenter). Then we
can write

L = bv = r0v0 = � i , (3.9)
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where b = |b | is the impact parameter, so

� ≡ |L | = bv = r0v0 . (3.10)

The scattering angle Θ is defined by

v̂0v̂ = r̂0b̂ = eiΘ/2 . (3.11)

From (3.8) we obtain
Lv − kr̂ = Lv0 − kr̂0 . (3.12)

Asymptotically v̂ = −r̂ so, with the help of (3.9), this gives us

(Lv + k)v̂ = (Lv0 + ki)v̂0 ,

which can be solved for

v̂0v̂ =
�v − ik

�v0 + k
= eiΘ/2 . (3.13)

This gives us immediately the famous deflection formula for Rutherford scattering:

ctn
Θ

2
=

bv2

−k
=

2Eb

−k
, (3.14)

where E is the energy of the system, and the sign of the angle distinguishes between
attractive and repulsive forces. The derivation here is a slight simplification of the
one in [1], where more details are given.

Now we turn to a recent spinor formulation of Newtonian mechanics [1] with
surprising implications. We use (2.11) and (2.12) to express the position vector r
as a function of a spinor U , and we derive an equation of motion for U to replace
Newton’s equation of motion for r. Using the anticommutivity of L with r in (3.3),
from (3.4) and (2.11) we derive

2U̇U−1 = ṙr−1 = r−1ṙ − r−2L . (3.15)

This can be solved for
ṙ = 2U̇σ1U

† (3.16)

or

rU̇ =
dU

ds
= 1

2 ṙUσ1 , (3.17)

where a new parameter s has been defined by the condition

dτ

ds
= r = |U |2 . (3.18)

Differentiating (3.17) we obtain

2
d2U

ds2
= (

..
rr + 1

2 ṙ2)U . (3.19)

From (3.1) we get
..
rr + 1

2 ṙ2 = E + f r ,
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where

E = 1
2 ṙ2 − k

r
= |U |−2

(
2

∣∣∣∣ dUds
∣∣∣∣2 − k

)
. (3.20)

Thus we obtain the desired equation of motion for U :

2
d2U

ds2
− EU = f rU = |U |2f Uσ1 . (3.21)

This is known as the Kustaanheimo-Stiefel (K-S) equation. It is most notable for
eliminating the singularity at r = 0 and for linearizing the equation of motion for
the Kepler-Coulomb problem.

For bound orbits (E < 0) with f = 0, this reduces to the 2D simple harmonic
oscillatory equation, with the solution

U = α0 cos
(ωs

2

)
+ iβ0 sin

(ωs
2

)
, (3.22)

ω2 = 2|E | . (3.23)where

Hence (3.18) gives us

r = 1
2 (α2

0 + β2
0) + 1

2 (α2
0 − β2

0) cos(ωs) (3.24)

and

τ = 1
2 (α2

0 + β2
0) +

1

2ω
(α2

0 − β2
0) sin(ωs) . (3.25)

Note that (3.24) solves Kepler’s problem relating coordinate time to position on the
orbit.

When perturbing forces are included, the K-S equation (3.21) has significant com-
putational advantages in applications to orbital mechanics. Vrbik [2] has refined the
numerical techniques for using it to compute the effects of perturbing forces. Strom
[3] has used geometric algebra to improve navigation software for the government
and commercial space programs.

4. SPACETIME ALGEBRA

Spacetime Algebra (STA) has been fully discussed in many places, of which [4] and
[5] are closest to our interests here. For that reason, we mention only the barest
essentials needed for spinor mechanics.

STA is the Geometric Algebra of Minkowski Spacetime M4. As in any Geo-
metric Algebra, the geometric product of two vectors a and b in M4 admits the
decomposition

ab = a · b + a ∧ b , (4.1)

where a · b is the usual Minkowski inner product. We use the signature for which
a2 = a · a is positive for a timelike vector.

Any (future-pointing) timelike unit vector γ0 determines a unique inertial system
with a “split” of spacetime into one time dimension and three spatial dimensions.
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Such a spacetime split is most simply expressed by the geometric product as follows:
For each spacetime point (or event) represented by a vector x in M4, the split is
specified by

xγ0 = t + r , (4.2a)

where
t = x · γ0 (4.2b)

is the time of the event (in natural units) and

r = x ∧ γ0 (4.2c)

represents the position of the event with respect to the inertial system determined
by γ0. Though x ∧ γ0 is a bivector in spacetime, we can identify r as a position
vector in the Euclidean space E3 of the preceding sections.

We can extend γ0 to a complete orthonormal basis {γµ; µ = 0, 1, 2, 3, } for M4,
with

γ2
0 = 1 and γ2

k = −1 for k = 1, 2, 3 . (4.3)

In comformity with (4.2c), we note that the

σk = γk ∧ γ0 = γkγ0 (4.4)

forms a basis for E3. Indeed, we find that, in accord with (2.5),

γ0γ1γ2γ3 = σ1σ2σ3 = i (4.5)

defines a unit pseudoscalar for both STA and G3. Thus, G3 is a subalgebra of STA.
A generic multivector M in STA can be written in the expanded form

M = α + a + F + ib + iβ , (4.6)

where α and β are scalars, and a and b are vectors, and F is a bivector. The reverse
M̃ of M is defined by

M̃ = α + a− F − ib + iβ . (4.7)

Its relation to the reverse defined in G3 by (2.8) is

M† = γ0M̃γ0 . (4.8)

The spacetime split of a bivector is given by

F = E + iB (4.9)

where
E = 1

2 (F + F †), iB = 1
2 (F − F †) . (4.10)

The split of an electromagnetic field into electric and magnetic parts is precisely of
this type.

A multivector M is said to be even if it has the expanded form

M = α + F + iβ . (4.11)
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Note that if the split (4.9) is inserted in (4.11), it takes the form (2.7) of a generic
multivector in G3. Thus G3 is the subalgebra of even multivectors in STA with a
given spacetime split.

Any Lorentz rotation of the orthonormal frame {γµ} into another orthonormal
frame {eµ} can be expressed in the form

eµ = RγµR̃ , (4.12)

where R is an even multivector with the normalization

RR̃ = 1 . (4.13)

An even multivector R representing a rotation in this way is called a spinor or, with
the normalization (4.13), a rotor.

5. SPINOR PARTICLE MECHANICS

Let x = x(τ) be the timelike history of a particle parameterized by its proper time.
The particle’s velocity is v = x

.
, where now the overdot indicates differentiation with

respect to proper time, so that
v2 = 1 . (5.1)

Because of this constraint, v = v(τ) can only rotate as it “moves” along the history.
Therefore, it can be expressed as a Lorentz rotation

v = Rγ0R̃ (5.2)

determined by a spinor R = R(τ). By differentiating (4.13) it can be proved that

Ω = 2ṘR̃ (5.3)

is necessarily bivector-valued. Differentiating (5.2) we find that

v̇ = Ω · v , (5.4)

where Ω · v = 1
2 (Ωv − vΩ). This shows that an equation of motion for v necessarily

has the form (5.4) with a specified functional dependence for Ω. Alternatively, for
specified Ω, (5.3) can be regarded as an equation of motion

Ṙ = 1
2ΩR (5.5)

for the spinor R, from which v = v(τ) can be obtained by (5.2). Aside from [5],
where it was introduced and studied, the spinor equation (5.5) has been largely
overlooked in the literature, probably because it cannot be written down, let alone
solved, without STA. Nevertheless, it has considerable advantages over (5.4), which
is ordinarily employed in a tensor form.

One major advantage of the spinor equation (5.5) is that it determines not merely
v, but, with v = e0 in (4.12), it determines the precession of an orthornormal frame
comoving with the velocity along the history. If the comoving frame is identified
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with the principal axes of a small rigid body, integrating both translational and
rotational motion of the body in a single equation.

A second major advantage of the spinor equation (5.5) is that it can be derived
as a classical limit of the Dirac equation [6], describing a classical charged particle
with spin and the quantum mechanically correct gyromagnetic ratio g = 2. Indeed,
for some cases the solution of (5.5) is identical to the solution of the Dirac equation.
Thus, through (5.5) the classical limit is more simple, direct and complete than in
other approaches.

For a test particle with charge to mass ratio ε moving in an electromagnetic field
F ,

Ω = εF (5.6)

and (5.4) becomes the Lorentz force equation

v̇ = εF · v . (5.7)

Exact solutions of the corresponding spinor equation have been found and studied
in detail for three cases [5]: a constant field, a plane wave and a Coulomb field.

For constant F , the solution of the spinor equation (5.5) is a simple exponential
function, though a second integration to get the particle’s history x = x(τ) requires
a neat trick if complexities are to be avoided in the general case [5]. When F is
a plane wave field, the spinor solution to (5.5) is identical to the Volkov solution
of the Dirac equation [6], except for a phase factor determined by the classical
Hamilton-Jacobi equation. This simplifies the form and interpretation of the Volkov
solution significantly. The spinor solution to (5.5) for a Coulomb field has not, to my
knowledge, appeared elsewhere in the literature. As it has some remarkable features
which ought to be widely known, I describe it here in some detail with an eye to
applications and generalization.

We consider a massive point source, so it can be regarded as at rest in the inertial
system defined by γ0, and we place it at the origin r = 0. We suppose that its field
is derivable from a central potential V = V (r), so

εF = �∧ (V γ0) = −γ0 ∧�V = −∇V = −r̂∂rV , (5.8)

where � = ∂x is the derivative with respect to the spacetime point x, which admits
the spacetime split

γ0
� = γ0 · � + γ0 ∧� = ∂t + ∇ , (5.9)

with ∇ = ∂r, so ∇V = (∇r)∂rV .
Constants of the motion derive from the fact that γ0 is a preferred direction.

From (4.2a), a spacetime split of v is

vγ0 = v · γ0 + v ∧ γ0 = ṫ + ṙ . (5.10)

From a spacetime split of the equation of motion (5.7) we obtain

..
t = γ0 · v̇ = εγ0 · F · v = −ṙ ·∇V = V̇ − ṫ∂tV . (5.11)

Therefore, for a static potential (∂tV = 0), the energy

W ≡ v · γ0 + V = ṫ + V (5.12)
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is a constant of the motion. The other part of the split of (5.7) gives us

d

dτ
(v ∧ γ0) = v̇ ∧ γ0 = ε(F · v) ∧ γ0 = εFv · γ0 , (5.13)

or
..
r = −ṫ r̂∂rV . (5.14)

This implies conservation of the angular momentum

L = r ∧ ṙ = � i , (5.15)

which differs from the Newtonian expression (3.2) only by replacing the coordinate
time derivative with a proper time derivative. With that replacement, many of the
equations in Section 3 apply here as well; in particular, the eqns. (3.3) to (3.7) and
(3.9) to (3.11) with v ≡ | ṙ |.

We are now well prepared to complete our analysis of the Coulomb potential and
compare results with the nonrelativistic treatment in Section 3. Steve Gull [7] has
recently shown that the orbital motion can be described by the KS-equation, just
as in the nonrelativistic case. Introducing the KS parameter s by (3.18) as before,
for the Coulomb potential V = −k/r, (5.14) integrates immediately to

Wτ = t− ks . (5.16)

Since ∂rV = −V/r for the Coulomb potential, from (5.16) and (5.14) we obtain

..
rr = ṫV = 1

2 (W 2 − ṫ2 − V 2) .

Using (5.12) to eliminate ṫ2, this can be put in the form

..
rr + 1

2 (ṙ2 − V 2) = 1
2 (W 2 − 1) . (5.17)

By virtue of (3.5), for the Coulomb potential we can write

ṙ2 − V 2 = ṙ2 +
(�2 − k2)

r2
. (5.18)

Thus, by shifting the effective angular momentum we can absorb the V 2 term into
ṙ2 and insert (5.17) into (3.9) to get the relativistic K-S equation

d2U

ds2
= 1

4 (W 2 − 1)U . (5.19)

However, the spinor U is no longer related to the position vector r by (2.11). Instead,
we have

Uσ1Ũ = rσ1e
iαθ = rei(α−1)θ (5.20)

where, for � > k,

α =

(
�2 − k2

�2

) 1
2

. (5.21)
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This shows explicitly that U specifies the particle position in a precessing reference
frame.

As in the nonrelativistic case, the bound state (W 2 > 1) solutions to (5.19) are
given by (3.22), although the frequency is given by ω2 = |W 2 − 1 | instead of (3.23).
The proper time τ is related to the K-S parameter s by (3.25), and the two of them
are related to the coordinate time t by (5.16). In the nonrotating reference frame of
the stationary “nucleus,” the orbit is seen as a precessing ellipse. In the Newtonian
case, only orbits with � = 0 pass through the origin.

For sufficiently small angular momentum (� ≤ k) we see from (5.18) that the
“centrifugal potential” is insufficient to absorb the “relativistic correction” and pre-
vent even hyperbolic orbits from passing through r = 0. As Gull has pointed out,
the critical value � = k occurs in a Bohr atom with atomic number Z = 137, and a
similar “crisis” occurs in quantum mechanical Coulomb solutions of the Dirac equa-
tion with the same atomic number. Of course, in the real physical situation there
are other factors to prevent the particle from reaching the origin, so this crisis should
not be taken too seriously. Nevertheless, a study of the critical solutions is of some
interest. The distinctive features of these solutions are most evident in the general
solution of the spinor equation (5.5), to which we now turn.

Angular momentum conservation implies that the orbit lies in the plane of L̂ = i.
Therefore, as in (2.11), we can refer the position vector with respect to a fixed
direction σ1 in the plane by writing

r̂ = Uθσ1Ũθ = U2
θσ1 = e−iθσ1 (5.22)

where
Uθ = e−

1
2 iθ , (5.23)

with
i = iσ3 = σ1σ2 . (5.24)

Inserting this into (3.3), we obtain the standard relation

� = r2θ̇ . (5.25)

For a Coulomb potential V = −k/r the spinor equation (5.5) becomes

Ṙ = − kr̂

2r2
R . (5.26)

Using (5.22) to change variables, this simplifies to

dR

dθ
= −κ

2
r̂R (5.27)

where κ = k/�. This has the general solution

R = UθSθL0 , (5.28)

where Uθ is defined by (5.23),

Sθ = e−
1
2Aθ (5.29)
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with
A = κσ1 − i = σ1(κ + σ2) , (5.30)

and
v0 = L0γ0L̃0 = L2

0γ0 (5.31)

is the velocity at θ = 0. It is convenient to align σ1 with a pericenter, so that

v0γ0 = L2
0 = (W − V0) + [(W − V0)

2 − 1]
1
2 σ2 (5.32)

with V0 = −k/r0.
The solution (5.28) is remarkable for its simplicity and structure. It reveals that

the bivector A is a constant of the motion along with the bivector L. We can regard
A as a generalization of the eccentricity vector (3.8), which is no longer constant
in the relativistic case, where the pericenter precesses. The quantity A2 = κ2 − 1
distinguishes three types of motion: bounded velocity for κ < 1, unbounded velocity
for κ > 1 and a “critical” case for κ = 1. In accord with (5.21) we write

α = |A | = |κ2 − 1 | 12 . (5.33)

For bounded velocity we can express A as a boost of i by a constant rotor K:

A = −αKiK̃ = −αK2i , (5.34)

whence

K2 = α−1Aσ1σ2 =
1 + κσ2

(1 + κ2)
1
2

. (5.35)

Therefore, we can express (5.29) as a composite of constant boost with a rotation:

Sθ = Ke−
1
2 iαθK̃ . (5.36)

For unbounded velocity we can write

A = αKσ1K̃ = αK2σ1 , (5.37)

so

K2 = α−1Aσ1 =
κ + σ2

(κ2 − 1)
1
2

(5.38)

and
Sθ = Ke−

1
2σσσ2αθK̃ . (5.39)

These results exhibit the solution (5.28) as a composite of boosts and rotations
in fixed timelike and spacelike planes. In the bounded case (5.36) the spinor Sθ

describes a continuous rotation, while in the unbounded case (5.39) it describes a
continuously increasing boost.

With these results any question about motion in a Coulomb field can be answered
with algebraic calculations, just as in the Newtonian case. For example, the rela-
tivistic deflection formula for Coulomb scattering can be derived (in much the same
way as in Section 3) by using (5.2), (5.28) and (5.32) to evaluate (3.11).
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To generalize the Coulomb solution (5.28) to an arbitrary central field, note
first that, since L = � i is conserved, the algebraic generators of motion are limited
to generators of rotations and boosts in the i-plane, for example, i, σ2 and their
commutator product i × σ2 = σ1. However, our Coulomb experience suggests that
it may be better to use the generators i and A, which have the commutator product
i ×A = κσ1. This leads us to construct the trial solution

R = e−
1
2 iϕe−

1
2Aµe−

1
2 iλL0 , (5.40)

where ϕ, µ and λ are scalar functions of proper time to be found from the given
potential function V (r) by substituting (5.40) into the equation of motion

Ṙ = − 1
2σ2e

iθ(∂rV )R . (5.41)

Beyond this, there is much to be done generalizing this approach to incorporate the
effects of perturbing forces, especially external magnetic fields and plane wave fields.

6. GRAVITATIONAL MOTION AND PRECESSION

The spinor equation of motion (5.5) has been used to describe the translational
and rotational motion of a small rigid body in a gravitation field according General
Relativity [8]. Recently, however, Lasenby, Doran and Gull [9] have proposed a new
gauge theory of gravity that employs geometric algebra in an essential way, and
appears to be a significant improvement on General Relativity. Here we outline its
application to motion in the static gravitational field of a fixed point mass and see
how it compares to the Coulomb problem in the preceding section, recalling that
the two motions are essentially identical according to Newtonian Theory.

In the gauge theory, the spinor equation for motion in a gravitational field has
the same form as (5.5):

Ṙ = 1
2Ω(v)R , (6.1)

except that the bivector gauge field Ω(v) = Ω(v, x) is a linear function of v = Rγ0R̃ .
Moreover, v itself is a linear function of the velocity x

.
given by

v = h−1(x
.
) , (6.2)

where the gauge tensor field h−1 plays the role of gravitational potential. Let us
refer to v as the celerity of the particle to distinguish it from the velocity x

.
.

As before, let the constant vector γ0 characterize the reference system in which
the point source is “at rest,” and let r̂ = er∧γ0 = erγ0 represent the radial direction
from its position at the origin. As explained in [8], the gravitational potential is
most naturally represented in the “Newtonian gauge,” where, in the notation of [9],
it takes the form

v = h−1(x
.
) = x

.− g2(x
. · γ0)er , (6.3)

with, for a source of mass M ,

g2 ≡ −
√

2M

r
, (6.4)
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with r = | r | = |x ∧ γ0 |. In this case

Ω(v) = /�∧ h−1(v̀) , (6.5)

where the accent over v serves to indicate that v is not differentiated by

/� ≡ h(�) = � + g2γ0 er · � , (6.6)

where h is the adjoint of h, and, as in (5.9), � is the derivative with respect to x.
Consequently,

h−1(v) = v − g2γ0er · v (6.7)

and
Ω(v) = γ0 ∧ /� (g2er · v̀) = γ0 ∧�(g2er · v̀) . (6.8)

Since γ0 is a preferred direction of the gravitational field, a spacetime split is in
order to take advantage of this symmetry. Thus, from (6.3)

v · γ0 = x
. · γ0 = ṫ , (6.9)

and
v ≡ v ∧ γ0 = ṙ − g2ṫr̂ . (6.10)

Since er · v = −r̂ · v, we can put (6.8) in the form

Ω(v) = −∇
(
g2

r · v̀
r

)
= −g2

r

[
v − 3

2 (v · r̂)r̂ ] , (6.11)

where differentiation (without coordinates) was performed by using the vector deriva-
tives ∇r = r̂ and ∇r · v̀ = v.

Now, before we can solve the spinor equation of motion (6.2), we need to relate
Ω(v) in (6.11) to parameters of the orbit. As before, the necessary relations come
from a spacetime split of the equation (5.4) for v̇. The time component of (5.4)
yields a “generalized energy” constant of motion

W ≡ v · h−1(γ0) = ṫ + g2v · r̂ = g2ṙ + (1 + g2
2)ṫ . (6.12)

The space component yields

v̇ = Ω(v)(v · γ0) = − ṫg2

r

[
v − 3

2 (v · r̂)r̂ ] . (6.13)

As before, this implies the conserved angular momentum

L ≡ r ∧ v = r ∧ ṙ = � i . (6.14)

Using (3.4) and (6.12) we can write

v − 3
2 r̂ r̂ · v = −r̂

[ L

r
− 1

2 r̂ · v
]

= −r̂ [ irθ̇ + 1
2 (ṫ−W ) ] . (6.15)

Putting this into (6.11) and using (5.22) we get the spinor equation of motion

2ṘR̃ =
g2

r
[ 1

2 (ṫ−W ) − iθ̇ ]e−iθσ1 . (6.16)

This is now of such a form that we can expect to solve it with the same trial solution
(5.40) suggested for the electromagnetic central force case. Answers to questions
about scattering, orbital motion and precession can be found in the same way as
before—only the functional forms are different.
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