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Abstract. Geometric algebra provides the essential foundation for a new approach to

symmetry groups. Each of the 32 lattice point groups and 230 space groups in three

dimensions is generated from a set of three symmetry vectors. This greatly facilitates

representation, analysis and application of the groups to molecular modeling and crystal-

lography.

1. Introduction

Symmetry is a fundamental organizational concept in art as well as science. To develop and exploit this
concept to its fullest, it must be given a precise mathematical formulation. This has been a primary
motivation for developing the branch of mathematics known as “group theory.” There are many kinds
of symmetry, but the symmetries of rigid bodies are the most important and useful, because they are
the most ubiquitous as well as the most obvious.

A geometric figure or a rigid body is said to be “symmetrical” if there exist isometries which
permute its parts while leaving the object as a whole unchanged. An isometry of this kind is called a
symmetry. The symmetries of a given object form a group called the symmetry group of the object.
Obviously, every symmetry group is a subgroup of the group of all such isometries, known as the
Euclidean group E(3). As is well known, every symmetry S can be given the mathematical form

S : x −→ x′ = Rx + a, (1)

where x designates a point in the object, R is an orthogonal transformation with the origin as a fixed
point, and the vector a designates a translation.

In most applications the operator R is represented by a matrix [R], so composition of transfor-
mations is achieved by matrix multiplication. This practice has two drawbacks, however. First, use
of matrices requires introducing a coordinate system, and that brings in arbitrary features that com-
plicate problems. Second, matrix elements are usually difficult to interpret geometrically. Geometric
algebra avoids these drawbacks with the coordinate-free canonical form

Rx = ±R†xR, (2)

where R is an invertible multivector, called a versor, with even (odd) parity corresponding to the plus
(minus) sign. The versor in (2) has been normalized to unity, so its reverse R† is equal to its inverse
R−1. When R is even, equation (2) describes a rotation, and R is often called rotor or a spinor.

The reader is presumed to be familiar with equation (2) and the versor representation of orthogonal
transformations; the subject has been thoroughly treated in (Hestenes 1986) with many applications to
mechanics. Surprisingly, this approach has not heretofore been been applied to a systematic treatment
of discrete symmetry groups in the published literature. To rectify that deficiency is the first of two
major objectives for this paper.

The first half of the paper provides a complete treatment of the point groups in two and three
dimensions. As this material is not to be found elsewhere, the main ideas are illustrated with examples,
and subtle points that are easily overlooked are thoroughly discussed. Aside from the mathematical
definition of a group, no prior knowledge about group theory is presumed. The main result is that
each of the point groups in three dimensions can be generated from a set of at most three symmetry
vectors that are tied directly to features of the object. This leads to a new systematic notation and
classification scheme for symmetry groups from which one can directly write down the generators for
any point group.

The point groups determine the classes of mathematically possible lattices known as crystal systems,
as explained in Section 4. This shows how geometric algebra can simplify theoretically crystallography
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considerably – for the symmetry vectors generating the point group can be identified with lattice vectors
that generate the lattice. In other words, the point group can be generated multiplicatively from the
objects on which it operates. Contrast this with the usual approach which develops the group elements
and the lattice as separate entities related only indirectly.

The point group of a lattice leaves a lattice point fixed. To get the complete symmetry group of a
lattice, one needs to combine the point group with translations. This raises another problem with the
standard representation for a symmetry by (1), namely: The orthogonal group is multiplicative while
the translation group is additive, so combining the two destroys the simplicity of both. The source of
this problem can be traced to the fact that equation (1) singles out one point, the origin, for special
treatment. The second major objective of this paper is to show how geometric algebra provides
an elegant solution of this problem with a simple new multiplicative representation for the space
groups generated directly from lattice vectors. Sections 4 and 5 introduce the essential mathematical
apparatus to achieve this objective.

Section 5 introduces a new homogeneous formulation of Euclidean geometry that treats all points
equally and generates an algebra of points, lines and planes. The formalism is applied in Section
6 to create the desired multiplicative model of the Euclidean group. This model provides a precise
algebraic formulation of the geometric notion that all symmetries can be generated from reflections in
planes. Thereby, it provides a new algebraic foundation for geometric intuition and a powerful tool
for computational geometry.

The rest of the paper is devoted to a systematic presentation of generators for the 230 space groups.
Although space limitations preclude treatment of all the groups, we do show how to construct any of
the generators from symmetry vectors, and we introduce a new scheme of space group symbols that
facilitates construction of group generators. All this is illustrated in a complete treatment of the 17
planar space groups.

The techniques and results in this paper hold great promise for simplifying and enriching the use of
symmetry groups in crystallography and molecular modeling. There are many fine books on crystal-
lography (O’Keefe and Hyde 1996) that can serve as a guide to practical applications of the method.
For an exhaustive description of the 230 space groups, the standard reference is the International
Tables for X-Ray Crystallography (1992). It is widely used in material science to characterize complex
crystal structures, for which the identification of the symmetry, class and space group continues to be
a nontrivial task. The International Tables are huge and cumbersome, so the simplifications offered
here would be of great value in material science research and engineering. Moreover, the method has
potential for much wider application.

2. Point Groups in Two Dimensions

As usual in mathematical and physical problems, the best strategy is to study the simplest cases
first, and therefrom discover results which are needed to handle the most complex cases. So let us
begin by examining the 2-dimensional symmetry groups with a fixed point. The fixed point condition
eliminates translations, so all the symmetries are orthogonal transformations. Consider, for example,
the benzene molecule shown in Fig. 1. This molecule has the structure of a regular hexagon with
a carbon atom at each vertex. Evidently, the simplest symmetry of this molecule is the rotation R
taking each vertex xk into its neighbor xk+1 as described by

xk+1 = Rxk = R†xkR = xkR2 . (3)

A sixfold repetition of this rotation brings each vertex back to its original position so R satisfies
the operator equation

R6 = 1 . (4)

This relation implies that the “powers” of R compose a group with six distinct elements R, R2, R3,
R4, R5, R6 = 1. This group, the rotational symmetry group of a hexagon, or any group isomorphic
to it, is called a (or the) cyclic group of order 6 and commonly denoted by C6.

The group C6 is a finite group, so-called because it has a finite number of elements. The order
of a finite group is the number of elements it contains. The element R is said to be a generator
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Fig. 1. Planar benzene (C6H6), showing generators of the symmetry group. (Hydrogen

atoms not shown.)

of C6, because the entire group can be generated from R by the group operation. The group C6 is
completely determined by the condition R6 = 1 on its generator, with the tacit understanding that
lower powers of R are not equal to the identity element. Any such condition on the generators of
a group is called a relation of the group. A set of relations which completely determine a group is
called a presentation of the group. For C6 the presentation consists of the single relation R6 = 1. It
is computationally advantageous to represent rotations by versors rather than linear operators, so we
look for a representation of C6 by versors. According to (3), the operator R corresponds to a unique
versor S = R2, so the operator relation R6 = 1 corresponds to the versor relation

S6 = 1 . (5)

This presentation of C6 has the advantage of admitting the explicit solution

S = e2πi/6 = eiπ/3 , (6)

where i is the unit bivector for the plane of rotation. The representation (6) shows explicitly that the
generator of C6 is a rotation through angle π/3.

Now, we know from equation (2) that to every rotation there corresponds two rotors differing only
by a sign. Consequently, to every finite rotation group there corresponds a rotor group with twice as
many elements. In the present case the generator R of the rotor group is related to the generator S of
the cyclic group by S = R2. Taking the negative square root of the relation S6 = (R2)6 = (R6)2 = 1,
we get the new relation

R6 = −1 . (7)

This is the presentation for the dicyclic group of order 12 generated by R. Strictly speaking, we
should include the relation (−1)2 = 1 in the presentation of the group since it is not one of the group
properties. However, this is taken care of by the understanding that the group elements are versors.
Since the dicyclic group presented by (7) is the versor group of C6, let us denote it by 2C6. The dicyclic
group actually provides a more complete description of rotational symmetries than the cyclic group,
because, as first explained in (Hestenes, 1986), the pair of rotors ±R distinguish equivalent rotations
of opposite senses. The cyclic group does not assign a sense to rotations. This important fact is
illustrated in Fig. 2 and explained more fully below.

We have seen how the rotational symmetries of a hexagon can be characterized by the single
equation S6 = 1 or better by R6 = −1. However, a hexagon has reflectional as well as rotational
symmetries. From Fig. 1 it is evident that the hexagon is invariant under reflection along any diagonal
through a vertex or the midpoint of a side. For example, with a = x1, the reflection

Ax = −a−1xa , (8)

is a symmetry of Fig. 1, as is the reflection

Bx = −b−1xb , (9)
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Fig. 2. Illustrating the interpretation of the spinors ±R = ±ab = a(±b) as equivalent

rotations with opposite sense generated by reflections with different senses.

where b is directed towards the midpoint of a side adjacent to the vertex, as shown in Fig. 1. These
reflections generate a symmetry group of the hexagon which, for the time being, we denote by H6.
This group is sometimes called the “dihedral group” of order 12, but that name will be reserved for
a geometrically different group isomorphic to it. To avoid introducing a new name, let us be content
with the symbol H6. Now, to get on with the study of H6, note that the product

BAx = (ab)−1x(ab) (10)

is a rotation; in fact, it is the rotation R which generates C6. Therefore, C6 is a subgroup of H6. From
this we can conclude that the operator equations

A2 = B2 = (BA)6 = 1 (11)

provide an abstract presentation of H6.
The rotor group 2H6 corresponding to H6 is generated by the vectors a and b normalized to unity.

Since R = ab must satisfy (7), the presentation of 2H6 is the set of relations

a2 = b2 = 1 , (12)

(ab)6 = −1 . (13)

According to (9), the two vectors ±b in 2H6 correspond to the single reflection B. Physically,
however, one can distinguish two distinct mirror reflections in a given plane by imagining the plane
surface silvered on one side or the other. Thus, we have two distinct reflecting planes (or mirrors) with
opposite orientations distinguished by the signs on their normal vectors ±b. An oriented reflection
in one of these oriented (silvered) planes maintains the physical distinction between an object and its
reflected image. So the two oriented reflections specified by ±b, describe the two possible placements
of an object on opposite sides of the reflecting plane. The (unoriented) reflection B in (9) makes no
distinction between objects and reflected images. The notion of oriented reflection is consistent with
the notion of oriented rotation. For the products of oriented reflections designated by ±b with an
oriented reflection designated by the vector a will produce the spinors representing equivalent rotations
with opposite senses, as illustrated in Fig. 2. Thus, each element of 2H6 characterizes some oriented
symmetry of a hexagon.

The group 2H6 is the multiplicative group generated by two vectors a, b with the properties (12)
and (13). The 24 distinct elements in the group are exhibited in Table 1. Note that the geometrical
interpretation given to ab in Fig. 2 permits the assignment of a definite sense to the unit versor 1, as
indicated in Table 1. So the versor 1 = e

1
2 i0 represents a rotation of zero angle in the positive sense,

while the versor −1 = e−iπ = e
1
2 i(−2π) represents a rotation of 2π with the opposite sense.
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Six distinct rotations
with "negative sense"
    represented by

Twelve distinct
    reflections
represented by
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a       b2 2
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(ab) 3

(ab) 4
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-1 =           =
- ab = ab(ba) = (ba)

- (ab) =  (ba)

 (ab)      (ba)6

6 5
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3

2
- (ab) =  (ba)3

- (ab) =  (ba)4

- (ab) = ba5

aba
ababa =    a(ba)

a

2

+_
+_
+_ +_

bab
babab =    b(ab)

b

2

+_
+_
+_ +_

Table 1. The 24 distinct elements of the group 2H6.

Ordinarily, the group H6 is regarded as the symmetry group of a regular hexagon. But we have
seen that the corresponding versor group 2H6 provides a more subtle and complete characterization
of the symmetries. Since the two groups are so closely related, it matters little which one is regarded
as the “true” symmetry group of the hexagon. The versor group, however, is easier to describe and
work with mathematically. Consequently, as we shall see, it will be easier to generalize and relate to
other symmetry groups.

Our results for the hexagon generalize immediately to any regular polygon and enable us to find
and describe all the fixed point symmetry groups of all two-dimensional figures. We merely consider
the multiplicative group 2Hp generated by two unit vectors a and b related by the dicyclic condition

(ab)p = −1 , (14)

where p is a positive integer. The vectors a and b determine reflections (8, 9) which generate the
reflection group Hp. The dicyclic group 2Cp is a subgroup of 2Hp generated by

ab = eiπ/p = e
1
2 i(2π/p) (15)

the rotor for a rotation through an angle of magnitude 2π/p. The corresponding rotation generates
the cyclic group Cp.

The versor group 2Hp or, if you will, the reflection group Hp is the symmetry group of a regular
polygon with p sides. The group is well defined even for p = 2, though a two sided polygon is hard to
imagine. When p = 1, (15) implies that b = −a, so 2H1 is the group consisting of the four elements
±a and ±1. Thus, the group H1 is the group generated by a single reflection. The group 2H1 consists
of the two elements ±1 while the corresponding rotation group C1 contains only the identity element 1.
Either of these last two groups can be regarded as the symmetry group of a figure with no symmetry
at all.

A symmetry group with a fixed point is called a point group. The groups Hp and Cp, for any
positive integer p, are point groups in two dimensions. The groups 2Hp and 2Cp are oriented point
groups. Besides Hp and Cp, there are no other point groups in two dimensions. This can be proved by
considering the possibility of a group generated by three distinct vectors a, b, c in the same plane. If
they are to be generators of a symmetry group, then each pair of them must be related by a dicyclic
condition like (14). It can be proved, then that one of the vectors can be generated from the other
two, so two vectors suffice to generate any symmetry group in two dimensions.

Although it takes us outside the domain of finite groups, it is worthwhile to consider the limiting
case p = ∞. With increasing values of p, a regular p-sided polygon is an increasingly good approxima-
tion to a circle, which can be regarded as the limit at p = ∞. Therefore, the complete orthogonal group
O(2) in two dimensions can be identified as the symmetry group of a circle, the rotation subgroup of
O+(2). It can be regarded as the symmetry group of an oriented circle. Note that a reflection will
reverse the orientation, so O(2) is the group of an unoriented circle. Note further, that even for finite
p, Cp is the group of an oriented polygon while Hp is the group of an unoriented polygon.
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3. Point Groups in Three Dimensions

We have seen how every finite subgroup of the orthogonal group O(2) can be generated by one or two
reflections. One might guess, then, that no more than three reflections are required to generate any
finite subgroup of the orthogonal group O(3). So we shall see!

If three unit vectors a, b, c are to be generators of a finite multiplicative group, then each pair
of vectors must generate a finite subgroup, so we know from our preceding analysis that they must
satisfy the dicycle conditions

(ab)p = (bc)q = (ac)r = −1 , (16)

where p, q, and r are positive integers. If r = 1, then (16) implies c = −a, and p = q, so (16) reduces
to a relation between two vectors, the case we have already considered. Therefore, if the vectors a, b,
and c are to be distinct, then each of the integers p, q, and r must be greater than 1.

The three generators of rotations in (16) are not independent, for they are related by the equation

(ab)(bc) = ac . (17)

This equation relates the sides of a spherical triangle with vertices a, b, and c. This relation restricts
the simultaneous values allowed for p, q, and r in (16). The precise nature of the restriction can be
ascertained by writing (16) in the equivalent form

ab = eic′π/p,

bc = eia′π/q, (18)

ac = eib′π/r.

The unit vectors a′, b′, c′ are poles (or axes) of the rotations generated by ab, bc, ac, so the
spherical triangle they determine is aptly called the polar triangle of the generating triangle {a,b, c}.
From (18) it follows that the interior angles of the polar triangle are equal in magnitude to correspond-
ing sides of the generating triangle and they have the values π/p, π/q and π/r. Therefore, according
to the “spherical excess formula” (Hestenes 1986), the area ∆′ of the polar triangle is given by

∆′ = π
(1
p

+
1
q

+
1
r
− 1

)
. (19)

This is the desired relation among p, q, and r in its most convenient form.
From (19) we can determine the permissible values of p, q, and r. Since the area ∆′ must be

positive, equation (19) gives us the inequality

1
p

+
1
q

+
1
r

> 1 . (20)

The integer solutions of this inequality are easily found by trial and error. Trying p = q = r = 3, we
see that there are no solutions with p > q > r > 2. So, without loss of generality, we can take r = 2
so (20) reduces to

1
p

+
1
q

>
1
2

. (21)

Requiring p ≥ q, we see that any value of p is allowed if q = 2, and if q = 3, we find that p = 3, 4 or 5.
This exhausts the possibilities. It is not difficult to prove that no new point groups with four or more
generating vectors are possible. For every subset of three vectors must generate one of the groups we
have already found, and it follows from this that if we have four generators, then one of them can be
generated from the other three.

All we need now is a suitable nomenclature to express our results in a compact form. Since each
of the multiplicative groups generated by three unit vectors is distinguished by the values of p, q and
r = 2 in the presentation (16), each of these finite diorthogonal groups can be identified by the symbol
[pq ]. Let us use the simpler symbol pq for the corresponding orthogonal groups, because they are more
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Table 2. Symbols for the double point (diorthogonal) groups in three dimensions and

their corresponding point (orthogonal) groups. The groups generated by three unit vectors

have the presentation

(ab)p = (bc)q = (ac)2 = −1 ,

with 5 ≥ p ≥ q ≥ 2. The groups generated by two unit vectors have the presentation

(ab)p = −1 .

prominent in the literature of mathematics and physics. The groups pq are usually called point groups
by physicists, who usually refer to the groups [pq ] as double point groups, though considering the
geometrical reason for the doubling, it might be better to call them oriented point groups. The usual
derivation of the double groups is far more complicated than the one presented here. Consequently,
the double groups are seldom mentioned except in the most esoteric applications of group theory to
physics. Of course, we have seen that there is ample reason to regard the diorthogonal groups as
more fundamental than the orthogonal groups. Even so, we have learned that the diorthogonal and
orthogonal groups are so simply and intimately related that we hardly need a special notation to
distinguish them.

Without altering the group presentation (16), we get subgroups of [pq ] by taking the various
poducts of the vectors a, b, c as generators. To denote these groups, let us introduce the notation p to
indicate a generator ab satisfying the relation (ab)p = −1. Accordingly, [p q ] denotes the dirotation
group generated by ab and bc, and p q denotes the corresponding rotation group. The notation is
explained further and the various groups it denotes are listed in Table 2.

Now that we have a compact notation, we can list in Table 3 all the point groups in three dimension,
that is, all the finite subgroups of O(3). We begin by listing the groups pq for the allowed values of
p and q determined above. Then we apply the “overbar notation” to generate a list of candidate
subgroups p q , p q, pq , pq. Finally, we check the candidates to see if they are new symmetry groups.

The groups pq are said to be finite reflection groups, because they are generated by reflections. All
the finite groups are reflection groups or subgroups thereof. The groups pq generated by two pairs of
reflections are finite rotation groups. Table 3 shows that the only finite rotation groups are the cyclic
groups p = Cp, the dihedral groups p2 = Dp, the tetrahedral group 33 = T , the octahedral group
43 = O and the icosahedral group 53 = I. These are the only finite groups with widely accepted
names. The last three of them are symmetry groups of the famous Platonic solids, the five regular
solids discovered by the ancient Greeks. The tetrahedral group is the rotational symmetry group
of a tetrahedron. The octahedral group 43 is the rotational symmetry group of both the (8-sided)
octagon and the (6-sided) cube. The icosahedral group 53 is the symmetry group of both the (20-sided)
icosahedron and the (12-sided) dodecahedron. The notation 53 indicates the fivefold symmetry at each
vertex (face) and the threefold symmetry at each face (vertex) of the icosahedron (dodecahedron). The
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OrderNameGeometric Schoenflies

Symbol

2

2
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(di)dihedral
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(di)icososahedral

(di)octahedral

(2)p

(2)2p

(2)2p

(2)2p

(2)4p

(2)12

(2)24

(2)24

(2)24

(2)48

(2)60

(2)120

(2)p = (2)2n

(2)2p = (2)4np    =  (2n)

p2  =  (2n)2

22

33
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C

I

hI

p

p

pv

nd

H

S

p

p

d

h

D

T

T

hT

O

O

D

phD

C

pvC

43

43

53

=

33 =   33

43 43=

p

p

p

p

p

Table 3. The (double) point groups in E3. As indicated by parentheses in the table,

for oriented point groups the order is double and the prefix “di” is added to the name for

the corresponding orthogonal groups. The groups p2 and p2 exist only for values of p, as

indicated in the table by writing p = 2n, where n is a positive integer. The symbols 33,

43, 53 do not appear, because they do not describe realizable symmetry groups.

notation 43 and 33 have similar interpretations for the other regular solids. From the fact that there
are no other rotational symmetry groups besides those we have mentioned, it is not difficulty to prove
that there are no regular convex polyhedra besides the Platonic solids. There exist, however, some
regular solids which are “starshaped” and so not convex. The largest symmetry groups of the Platonic
solids are actually the reflection groups 33, 43 and 53 rather than their rotational subgroups, but this
was not appreciated when names were handed out, so they are without special names.

The cyclic and dihedral groups are symmetry groups for various prisms or prismatic crystals rather
than polyhedra. However, in physics they appear most frequently as symmetry groups for molecules.
We are now in position to see that the dihedral group D6 = 62, rather than the cyclic group C6 = 6, is
the rotational symmetry group for the Benzene molecule (Fig. 1) in a space of three dimensions rather
than two. Furthermore, it is readily verified that the rotation group D6 = 62 is isomorphic to the
reflection group H6 = 6, and they have identical effects on the planar Benzene molecule; nevertheless,
they have different geometrical effects on three dimensional objects. In three dimensions the complete
symmetry group of the Benzene molecule is the reflection group D6h = 62, which is formed by using
the generating vector c along with the reflection generators a and b of H6 = 6, as illustrated in Fig.
1.
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Fig. 3. Generators a, b, c for the double point group [43] of a cube or an octagon.

Vertices a′, b′, c′ of the polar triangle (or fundamental region) specify axes of threefold,

twofold, and fourfold symmetry, as indicated by the triangle, lense, and square symbols.

Besides the groups pq generated by reflections and the groups p q generated by rotations, Table 3
lists “mixed groups” p q, pq and pq generated by combinations of rotations and reflections. Some of
the mixed groups are identical to reflection groups. For example, the equivalence 43 = 43 means that
a, b, c generate the same group as ab, c; in other words, the group 43 generated by three reflections
can also be generated by one rotation and one reflection.

Some of the candidates for mixed groups must be rejected because they do not satisfy the condi-
tion for a symmetry group. To see why, consider the rotary-reflection group pq. The corresponding
diorthogonal group [pq] has the same generator abc. Since ab represents a rotation and c represents a
reflection, the product abc represents a combined rotation and reflection, that is, a rotary-reflection.
The quantity R = (abc)2 is an even versor generating a dirotational subgroup of [pq], so it must sat-
isfy the dicyclic condition Rn = (abc)2n (for some integer n) if [pq] is to be a symmetry group. This
condition must be evaluated separately for each group. For example, for the group [p2], the vector c
is orthogonal to both vectors a and b, hence abc = cab and

R = (abc)2 = (ab)2. (22)

But (ab)p = −1, so

Rp = (abc)2p = (ab)2p. (23)

Therefore, the dicyclic condition Rn = −1 can be met only if p = 2n, that is, only if p is an even
integer. Thus, we have proved that the group p2 is a symmetry group only if p is even, as stated in
Table 3. The same argument proves that p2 is a symmetry group only for even p. In a similar way, it
can be proved that 33, 43 and 53 are not symmetry groups, but the algebra required is a little trickier.

Our “geometric notation” for the finite groups is unconventional, so Table 3 relates it to the widely
used Shoenflies notation to facilitate comparison with the literature on crystallography and group
theory. The rationale for the Schoenflies notation need not be explained here. However, it should be
noted that our geometric notation has the great advantage of enabling us to write down immediately
the generators and relations for any finite group by employing the simple code in Table 2. Thus, for
the group [43], the angle between generators a and b is π/4, the angle between b and c is π/3, and
the angle between a and c is π/2. Figure 3 shows three such vectors in relation to a cube whose
reflection group they generate. According to (18), the algebraic relations among the generators are
fully expressed by the equations

ab = eic′π/4, (24)
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Fig. 4. Fundamental regions for the reflection group 43 = O on the surface of a cube,

an octagon, or a sphere.

bc = eia′π/3, (25)

ac = eib′π/2 = ib′ . (26)

The poles a′, b′, c′ are also shown in Fig. 3, It should be evident from Fig. 3 that every reflection
symmetry of the cube is generated by a vector directed at the center of a face (like a) or at the midpoint
of an edge (like b or c). Furthermore, every one of these vectors is also the pole of a four-fold rotation
symmetry (like c′ or a) or of a two-fold rotation symmetry (like b′, b or c) but not of a three-fold
symmetry (like a′). Indeed, we see from Fig. 3 that b′ can be obtained from c by a rotation generated
by (ab)2 = eic′π about the c′ axis, so we can directly write down the relation

b′ = (ba)2c(ab)2 . (27)

Similarly, by a rotation about the a′ axis,

c′ = (cb)a(bc) = cbabc . (28)

This illustrates how algebraic relations in the group [43] can be written down directly and interpreted
by referring to some model of a cube like Fig. 3. A three-dimensional physical model of a cube is even
more helpful than a figure.

The polar triangle with vertices a′, b′, c′ determines a triangle on the surface of a cube, as seen in
Fig. 3. This triangle is called a fundamental region of the group 43 for the following reason. Notice
that each of the three generators a, b, c is perpendicular to one of the three sides of the triangle, so a
reflection by any one of the generators will transform the triangle into an adjacent triangle of the same
size and shape. By a series of such reflections the original triangle can be brought to a position covering
any point on the cube. In other words, the entire surface of the cube can be partitioned into triangular
fundamental regions, as shown in Fig. 4, so that any operation of the group 43 simply permutes the
triangles. Fig. 4 shows an alternative partition of the octahedron and the sphere into fundamental
regions of the group 43. In a completely analogous way, the tetrahedron and the icosahedron (or
dodecahedron) can be partitioned into fundamental regions of the groups 33 and 53 respectively.

Given one fundamental region of a group, there is one and only one group operation which trans-
forms it to any one of the other fundamental regions. Consequently, the order of a group is equal to
the number of distinct fundamental regions. Thus, from Fig. 4 we see that there are eight fundamental
regions on the face of a cube, so there are 6 × 8 = 48 elements in the group 43. To get a general
formula for the order of finite groups, it is better to consider fundamental regions on a unit sphere.
Then the area of each fundamental region is equal to the area of the polar triangle given by (19), so
the order of the group is obtained by dividing this into the area 4π of the sphere. For example, taking
r = 2 and q = 3 in (19), we find that the orders of the reflection groups p3 are given by

4π

δ′
=

2p

6 − p
. (29)

This is twice the order of the rotation groups p3, because all rotations are generated by pairs of
reflections. The orders of the other finite groups and their subgroups can be found in a similar way.
The results are listed in Table 3.
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4. The 32 Crystal Classes and 7 Crystal Systems

A crystal is a system of identical atoms or molecules located near the points of a lattice. A 3-
dimensional lattice is a discrete set of points generated by three linearly independent vectors a1, a2,
a3. These vectors (and their negatives −a1, −a2, −a3) generate a discrete group under addition known
as the translation group of the lattice. Each element can be associated with a lattice point designated
by an and can be expressed as a linear combination of the generators with integer coefficients, that is,

an = n1a1 + n2a2 + n3a3 , (30)

where n1, n2, n3 are integers. Given the generating vectors, any set of integers n = {n1, n2, n3}
determines a lattice point, so the lattice is an infinite set of points. Of course, any crystal consists
of only a finite number of atoms, but the number is so large that for the analysis of many crystal
properties it can be regarded as infinite without significant error. Our aim here is to classify crystals
according to the symmetries they possess. The symmetries of a crystal depend only on the locations
of its atoms and not on the physical nature of the atoms. Therefore, the analysis of crystal symmetries
reduces to the analysis of lattice symmetries, a well-defined geometrical problem.

Like any finite object, the symmetry of a lattice is described by its symmetry group, the complete
group of isometries that leave it invariant. However, unlike the group of a finite object, the symmetry
group of a lattice includes translations as well as orthogonal transformations. Before considering
translations, we determine the conditions for a lattice to be invariant under one of the point groups.

Lattice calculations are greatly facilitated by introducing the reciprocal frame {a∗
k}. Although

reciprocal frames are familiar tools in crystallography, it is worth mentioning that geometric algebra
facilitates their definition and use (Hestenes 1986, Hestenes and Sobczyk 1984). Presently, all we need
are the relations

a∗
j · ak = δjk , (31)

for j, k = 1, 2, 3, which determine the reciprocal frame uniquely.
Now, any fixed-point symmetry R of a lattice transforms lattice points ak (k = 1, 2, 3) into new

lattice points

sk = Rak =
∑

j

aj sjk , (32)

where the matrix elements

sjk = a∗
j · sk = a∗

j · (Rak) (33)

are all integers. Consequently, the trace of this matrix
∑

k

skk =
∑

k

a∗
k · (Rak) (34)

is also an integer. This puts a significant restriction on the possible symmetries of a lattice. In
particular, if R is a rotation symmetry generating a rotation subgroup, then it satisfies a cyclic
condition Rp = 1, and it rotates the lattice through an angle θ = 2π/p. It can be shown that

TrR =
∑

k

a∗
k · (Rak) = 1 + 2 cos θ . (35)

This has integer values only if

cos θ = 0, ± 1
2 , ±1 , (36)

which has the solutions

θ = 0,
π

3
,

π

2
,

2π

3
, π,

4π

3
,

3π

2
,

5π

3
, 2π . (37)
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Table 4. The 32 crystal classes (point groups).
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Fig. 5. Subgroup relations among the 32 crystallographic point groups. Dark lines

connect groups in the same crystal system.

Consequently, the order p of any cyclic subgroup of a lattice point group is restricted to the values

p = 1, 2, 3, 4, 6 . (38)

This is known as the crystallographic restriction.
The point groups satisfying crystallographic restriction are called crystallographic point groups.

There are exactly 32 of them. They are listed in Table 4. Crystals are accordingly classified into 32
crystal classes, each one corresponding to one of the point groups. Besides our geometric symbols
for the crystal classes (point groups) and the symbols of Schoenflies, Table 4 lists symbols adopted
in the International Tables of X-Ray Crystallography (1992), an extensive standard reference on the
crystallographic groups.

It is conventional to subdivide the crystal classes into seven crystal systems with the names given in
Table 4. This subdivision corresponds to an arrangement of the point groups into families of subgroups,
as indicated in Fig. 5. The largest group in each system is called the holohedry of the system. Relations
of one system to another are described by the subgroup relations among their holohedry, as shown in
Fig. 6. From the symbols, it is easy to produce a set of generators for each of the seven diholohedry
(the versor groups of the holohedry). Figure 7 has sets of such generators arranged to show the simple
relations among them. Note that the orthogonal vectors a, c can be chosen to be the same for each
system, and there are three distinct choices for the remaining vector b. Actually, from the generators
for [43 | and [62] the generators of all other crystallographic point groups can be generated, because
all the groups are subgroups of [43] or [62], as shown in Fig. 5.

We have determined all possible point symmetry groups for 3-dimensional objects. There are,
however, an infinite number of different objects with the same symmetry group, for a symmetry group
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order

cubic

trigonal

monoclinic

triclinic

48

24

16

12

8

4

2

43

42

22

22

62

62

_

_

22

orthorhombic

hexagonal

tetragonal

Fig. 6. Subgroup relations for the seven holohedry.

describes a relation among identical parts of an object without saying anything about the nature of
those parts.

5. Homogeneous Euclidean Geometry

As an arena for Euclidean geometry we employ the metric vector space R4,1 with Minkowski signature
(4,1) and its geometric algebra R4,1 = G(R4,1). The Minkowski signature implies the existence of a
cone of null vectors similar to the light cone in spacetime. A vector x is said to be a null vector if
x2 = x · x = 0. The set of all null vectors in R4,1 is called a null cone. Remarkably, the 3d Euclidean
space E3 can be identified with the set of all null vectors in R4,1 satisfying the constraint

x · e = 1, (39)

where e is a distinguished null vector called the point at infinity. This constraint is the equation for
a hyperplane with normal e. Thus, we identify E3 with the intersection of a hyperplane and the null
cone in R4,1, as expressed by

E3 = {x |x2 = 0, x · e = 1}, (40)

where each x designates a point in E3. This is called the homogeneous model of E3, because all points
are treated equally. In contrast, the usual representation of Euclidean points in R3 = R3,0 is an
inhomogeneous model of E3, because it singles out one point, the origin, as special.

The great advantage of the homogeneous model is the simplicity and fluidity that geometric algebra
gives to the relations, constructions and inferences of Euclidean geometry. For use in crystal geometry
we record some of the basic definitions and results without elaboration. More details are given in
(Hestenes 2002, 2001 and 1991), including proofs of some results that are just stated here.

The primary fact is that the squared Euclidean distance between any two points x and y is given
by

(x − y)2 = −2x · y (41)

Thus, Euclidean distances can be computed directly from inner products between points. The oriented
line (or line segment) determined by two distinct points p and q is represented by the trivector

P = p ∧ q ∧ e, (42)

known as a line vector or sliding vector in classical parlance. All geometric properties of the line
(segment), including its relation to other lines, points and planes, can be computed from trivector P
by algebraic means. The tangent vector n for the line is

n ≡ (p ∧ q) · e = p − q . (43)

14



System GeneratorsDiholohedry

[43]Cubic

πa
b

c

/4

π/3

[62]Hexagonal

a b

c

π/6

a b

c

π/6

[42]Tetragonal

πa
b

c

/4

[62]Trigonal

[22]Orthorhombic

a

b

c

a
b

c

[22]Monoclinic

[22]Triclinic

ac

a

b

c

ac

abc = i

Fig. 7. Generators for the seven diholohedry. One of the generators of [22] and [62] is a

bivector ac, and the generator of [22] is the unit trivector abc = i. All other generators

are vectors.

and the length of the line segment is given by

P 2 = n2 = (p − q)2 = −2p · q. (44)

A point x lies on the line P if and only if

x ∧ P = x ∧ p ∧ q ∧ e = 0. (45)

This is a non-parametric equation for the line.
To relate our homogenous method to the vast literature on geometry and mechanics, we need to

relate our homogeneous model for E3 to the standard vector space model. Happily, this can be done
in a straightforward way with an elegant device called the conformal split. The essential idea is to
parametrize all the points in Euclidean space by the family (or pencil) of lines through a single point.

The pencil of lines through a fixed point e0 can be characterized by the variable line vector

x = x ∧ e0 ∧ e = x ∧ E. (46)

This can be inverted to express x as a function of x:

x = xE − 1
2x

2e + e0, (47)
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where
E ≡ e0 ∧ e =⇒ E2 = 1. (48)

Thus, we have a one-to-one correspondence between Euclidean points and line segments attached to
a given point.

The line vectors specified by (46) form a 3-dimensional vector space

R3 = {x}, (49)

which can be identified with the standard vector space model of E3, wherein the distinguished point
e0 is represented by the zero vector. The mapping of Euclidean points onto vectors in R3 defined by
(46) and (47) is called a conformal split. The conformal split of Euclidean points generates a split of
the entire geometric algebra into a commutative product of subalgebras:

R4,1 = R3 ⊗R1,1, (50)

where R3 = G(R3) as before, and R1,1 is the Minkowski geometric algebra generated by the vectors
e0 and e. The chief use of the conformal split is to relate homogeneous geometry to standard vector
space geometry. In particular, it enables a smooth connection between the inhomogeneous treatment
of point groups in the first part of this paper and the homogeneous treatment of the crystallographic
groups in the second.

Two points determine a plane as well as a line. For distinct points p and q with n ≡ p − q, the
equation for the oriented plane bisecting the line between them is

n · x = 0. (51)

The plane is the set of all points x that are equidistant from the two points, as expressed by p ·x = q ·x
The direction (sign) of n assigns an orientation to the plane. From (39) it follows that every normal
has the property

n · e = 0. (52)

We adopt this as the defining property of a normal (vector), because every vector that has it deter-
mines a unique plane defined by equation (51). Every normal determines the location as well as the
orientation of the plane. It is not essential to specify the normal as a difference between two points,
though it is often useful.

The relation of one plane to another is completely determined by the algebraic properties of their
normals without reference to any points. To formalize that fact, it is convenient to define the meet
n ∨ m for planes with normals m and n by

n ∨ m ≡ n · (mI) = (n ∧ m)I, (53)

where I is the unit pseudoscalar for R4,1. The meet determines a line vector representing the inter-
section of the two planes. Indeed, the right side of (53) expresses the meet as the dual of a bivector,
so it is a trivector, as required for a line. The condition for a point x to lie on this line is

x ∧ (n ∨ m) = [x · (n ∧ m)]I = [(x · n)m − (x · m)n]I = 0. (54)

This condition is met if and only if x · n = x · m = 0. In other words, x must lie in both planes.
There are three distinct ways that the planes might intersect, depending on the value of n ∧m. If

n ∧ m = 0 the planes coincides. Otherwise,

(n ∨ m)2 = −(n ∧ m)2 = n2m2 − (n · m)2 ≥ 0. (55)

If this quantity is positive, the planes intersect in a finite real line. If it vanishes, the planes are
parallel, and we may say that the lines intersect in a line at infinity. The concept of a line at infinity
is introduce so we can state without exception that every pair of planes intersect in a unique line. The
null case in (55) tells us that the line vector for a line at infinity must be the dual of a null bivector.
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6. Symmetries from Reflections

It has been known for more than a century that every symmetry in E3 can be generated from
reflections in planes (Coxeter 1971). In particular, any rotation about a given line can be reduced to
a product of reflections in two planes that intersect in that line, and any translation can be reduced
to a product of reflections in two parallel planes. At long last, geometric algebra makes it possible
to cast this powerful geometric insight into a simple algebraic form the facilitates the composition of
symmetries.

By definition, a symmetry S in E3 is a transformation that leaves invariant the Euclidean distance
between points, expressed by (x − y)2 = −2x · y in our homogeneous model. Invariance of the inner
product x · y is the defining property of orthogonal transformations on the vector space R4,1. It is
a general theorem of geometric algebra (Hestenes 1991, Hestenes and Sobczyk 1984) that every such
transformation S taking a generic point x0 to the point x can be expressed in the canonical form

x′ = S x = S−1xS∗ (56)

where S is an invertible multivector in R4,1 and, as before, S∗ = ±S according to the parity of S.
To preserve our definition of homogeneous Euclidean space, the point at infinity must be an in-

variant of the symmetry, as expressed by

S−1eS∗ = e or Se = eS∗ = ±eS. (57)

Every such versor can be expressed as a product of vectors:

S = n1n2...nk, (58)

where
nk · e = 0 or nke = −enk. (59)

Moreover, for given S, the nk can be chosen so that k ≤ 5.
The great power of this theorem is that it reduces the composition of symmetries, as expressed by

the operator equation
S2S1 = S3, (60)

to a geometric product of their corresponding symmetry versors:

S1S2 = S3. (61)

Thus, the Euclidean group E(3) is reduced to a multiplicative group of versors.
Comparing (59) with (52), we see that every symmetry vector n is a normal for some plane in E3.

It follows that the symmetry
nx = −n−1xn (62)

is a reflection in the “n-plane.” Indeed, if x is any invariant point of the symmetry, then

x = −n−1xn, so nx + xn = 2x · n = 0, (63)

which is the normal equation for the n-plane.
The composite symmetry S = mn of reflections in two distinct planes is completely characterized

by the geometric product mn of their normals. The symmetry S can be generated from many different
reflections, so it is desirable to express its versor in a canonical form independent of the choice of m
and n. For simplicity we impose the normalization n2 = m2 = 1, though we will have good reason to
drop that condition later on. In this case, we have the identity:

m2n2 = 1(m · n)2 − (m ∧ n)2. (64)

Also, the versor constraint (57) takes the form

(m ∧ n) · e = 0. (65)

There are two different cases to consider, as specified by the conditions (55).
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When the planes are parallel, we have (m ∧ n)2 = 0, so the constraint (65) allows us to define a
vector a by writing

ea = e ∧ a = 2m ∧ n. (66)

Therefore, the versor mn = 1 + m ∧ n is equivalent to a versor Ta defined by

Ta ≡ 1 + 1
2ae. (67)

A little algebra shows that this versor generates a translation

Tax = T−1
a x Ta = x + a. (68)

Squaring this equation, we see that
a2 = −2a · x (69)

has the same value for every point x. It can be shown that the right side of (68) has a conformal split
of the form

x + a = (x + a)E − 1
2 (x + a)2e + e0, (70)

in agreement with the usual representation for a translation in equation (1).
The conformal split of the translation vector in terms of the plane normals is obtained directly

from (66):
a = a ∧ E = a ∧ e0 ∧ e = 2m ∧ n ∧ e0 = 2[(m ∧ n)e0]E, (71)

where (65) was used to get the form on the right. The magnitude of the translation is therefore

|a| = |a| = 2|(m ∧ n) · e0|, (72)

which holds for any point e0 chosen as origin. Also, using

eE = e = −Ee (73)

to show that
ea = ea = ae = −ae, (74)

we can put (67) in the form
Ta = 1 + 1

2ae = 1 − 1
2ae ≡ Ta, (75)

where, despite the conformal split of vector a, the right side is independent of the choice of origin.
When the two planes intersect, we have (m ∧ n)2 < 0, and the line vector for the intersection is

L = (m ∧ n)I. If the origin e0 is chosen to lie on the line, we have

e0 ∧ L = e0 · (m ∧ n)I = 0, (76)

so the normals have the conformal splits m = mE, n = nE, and the symmetry versor

mn = mn (77)

has exactly the rotor form that we studied in Sections 2 and 3. Since the choice of e0 is arbitrary, we
can conclude that the symmetry m n is a rotation about the line L = (m∧n)I through half the angle
between m and n.

One other symmetry of special interest is space inversion at a point p, defined by

Ipx = IpxIp, where Ip = (p ∧ e)I = I∗−1
p . (78)

This is equivalent to reflection in three mutually orthogonal planes at p. Representing inversion by
the trivector versor Ip avoids choosing reflecting planes (as done for the triclinic case in Fig. 7).
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7. The Space Groups

We have seen that there are 32 point groups that leave some lattice invariant. The complete symmetry
group of a crystal is called its space group. Each element of a space group can be written as an
orthogonal transformation combined with a translation, as represented by (1). Consequently, every
space group can be described as a point group combined with a translation group, and we can determine
all possible space groups by finding all possible combinations. An enumeration of the space groups is
of great interest because it characterizes the structure of any regular crystal that might be found in
nature. Our purpose now is to see how that can be done.

The translation group of a crystal is an additive group generated by three vectors a1, a2, a3,
while the double point group is a multiplicative group generated by at most three vectors a, b, c.
Consequently, the space group can be characterized by a set of relations among these two sets of
generators. Indeed, we can choose three linearly independent vectors from the two sets and write the
others in terms of them. Thus, every element of a space group can be expressed in terms of three
vectors which generate translations by addition and orthogonal transformations by multiplication.

For the three symmetry vectors generating a space group, we choose the set a, b, c used to
generate point groups in Section 4, but we adjust their lengths and directions to generate the shortest
translations in the lattice compatible with their function as space group generators. Next we use the
results of Sections 5 and 6 to express the versor generators of a space group in terms of its symmetry
vectors.

Since all lattice points are equivalent, it is convenient to select one of them, say e0, as the origin
for a conformal split and relate the irreducible generators to that point. The symmetry vectors a, b,
c of Section 4 are translated into normal vectors a, b, c for planes through e0 by the conformal split

a = aE, b = bE, c = cE. (79)

The condition that e0 is at the intersection of the three planes is

a · e0 = b · e0 = c · e0 = 0. (80)

In the homogeneous model, reflections are generated by the normals a, b, c rather than a, b, c, and
translations are generated by versors Ta = Ta, Tb = Tb and Tc = Tc, as defined in (75). This makes it
possible to compose reflections and translations by versor multiplication. Note that

ab = ab, (81)

so a and b generate the same rotations as a and b.
The magnitude of a is adjusted so that Ta moves each lattice point to the next one in the direction

of a. Likewise for b and c. The inverse translation T−1
a = T−a moves the points back. For integer n,

an n-fold application of Ta is equivalent to a single translation by n lattice points, as expressed by the
equation

Tn
a = Tna. (82)

Actually, this formula holds for any scalar value of n, although it connects lattice points only when n
is an integer. We need fractional values for some space groups. In consonance with equation (30), any
translation in the space group can be derived from the irreducible translations by

T(n1a+n2b+n3c) = Tn1
a Tn2

b Tn3
c , (83)

where the nk are any integers. Now we are prepared for a detailed analysis of the space groups.
We can determine all the space groups by taking each of the 32 point groups in turn and considering

the various ways it can be combined with translations to produce a space group. Thus, the space groups
fall into 32 classes determined by the point groups. The number of space groups in each class is given
in Table 4. There are 230 in all. This is too many to consider here, so let us turn to the simpler
problem of determining the space groups in two dimensions.
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7.1 Planar Space Groups

In two dimensions there are 17 space groups. Generators for each group are given in Table 5 along
with a “Geometric Symbol” designed to describe the set of generators in a way to be explained. For
reference purposes, the table gives the “short symbols” for space groups adopted in the International
Tables for X-ray Crystallography. Finally, the table shows that the space groups fall into 4 crystal
systems distinguished by their symmetry vectors a, b in relation to a lattice.

To see how every 2-dimensional space group can be described in terms of two symmetry vectors, let
us examine a representative sample of the groups and generators in Table 5. The reader is advised to
refer continually to the table while the groups are discussed. In the geometric symbol for each group,
the class is indicated by the class (point group) symbol devised earlier.

The space group symbol includes the slash symbol / to distinguish it from the point group symbol
and to indicate that translations must be included among the generators. The number of translations
that must be included is not specified, as that is easily inferred from the point group. The symbol
after the slash indicates some fusion among reflections and primary translations, as explained below.

In the group 1/, the vectors a and b generate translations only. Since the point group 1 contains
only the identity element, it does not imply any relation between the directions of the translation
vectors, so the lattice they generate is said to be Oblique. As shown in Table 5, the group 1/ has four
generators: two irreducible translations and their inverses.

In 2d the point group 2 is generated by the bivector a ∧ b, which produces a rotation by π in the
plane. Note that the group 2/ has only three generators instead of the four in 1/, because the inverse
of any translation is generated according to

T−1
a = T−a = (a ∧ b)−1Ta(a ∧ b). (84)

The symbol 1 indicates that the groups 1/ and 1/2 contain a single reflection versor, say a. Since
reflection by a is required to leave the lattice invariant, it must transform translation generators into
translation generators. By considering the alternatives, one can see that this can be done in the
following ways. In the group 1/, the reflection is along the direction of one of the translations, so the
translation can be reversed by

aTaa = a2T−a
.= T−a, (85)

where the symbol .= indicates equality up to an irrelevant scale factor (a2 in this case). If the other
translation vector b is orthogonal to a, then

aTba
.= Tb. (86)

Since a and b determine a rectangle, the lattice they generate is said to be Rectangular. Another
relation of reflection to translations arises in the Rhombic case.

The /2 in the groups 1/2 and 2/2 and the /3 in 3/3 indicates a fractional combination of primary
translations Ta, Tb. The primary translations can be derived therefrom: for example,

(T 1/3
a+b)

2 ab T
1/3
a+b ba

.= Ta. (87)

Note in Table 5, that the choice of symmetry vectors a, b is different for the group 3/3 than for the
groups 3/ and 3/, though they pertain to the same lattice.

The 2 in the group symbol 4/2 specifies a reflection-translation combination, such as

aTa/2 = T−1
a/4aTa/4, (88)

which represents reflection in a line (or plane in 3d) displaced from the origin by a/4. The number 2
specifies the relation

(aTa/2)2
.= 1, (89)

The g in the group symbol 1/g designates a glide-reflection with a versor generator of the form

G = aTb/2 = Tb/2a, (90)

where b must be orthogonal to a. Note that

G2 = a2T 2
b/2

.= Tb, (91)
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Table 5. The 17 planar space groups.

System and Lattice Space Group Generators
Geometric International

Space Group Symbol

1 p1

p2

p4

p4m

p4g

p3

p3m1

p6

p6m

p31m

pm

pmm

pmg

pgg

cmm

cm

pgg

g

g

Oblique

Rectangular

Square
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so Tb is not a primitive generator in this case.
The bar over the g in the group symbol 2/g indicates a product of fractional translations fused

with a reflection to produce a displaced glide-reflection, as in the generator

aT
1
2

a+b = aTa/2Tb/2 = T−1
a/4aTb/2Ta/4, (92)

which generates a glide-reflection along a line displaced from the origin by a/4.
In the group 1/g the reflection signified by the symbol 1 is fused with a translation into a glide-

reflection. Consequently, the point group 1 is not a subgroup of 1/g, as it is in 1/ and 1/2. For this
reason, the symbol 1 is said to specify the class rather than the point group of the space groups 1/,
1/2 and 1/g .

It should be easy now to interpret the symbols for the other space groups in Table 5. But a few
more comments may be worthwhile. The space groups in the Rectangular and Oblique systems contain
two arbitrary parameters, the so-called “lattice constants” | a | = |a | and | b | = |b | which specify the
magnitude of generating translations. On the other hand, a group like 4/ has only one lattice constant
corresponding to a single generating translation, as all other translations are obtained from the one
by operations of the point group.

It is important to distinguish between a crystal or a pattern and its lattice. The crystal is a system
of similar atoms and a pattern is a system of similar figures located at the points of a lattice. The
space group is a symmetry group of the crystal or pattern, while the lattice has its own symmetry
group called a lattice group. Although there are 17 different space groups in two dimensions, there
are only 5 different lattice groups for the lattice types illustrated in Table 5. It will be noted that
two distinct lattice types, the Rectangular and the Rhombic, are derived from the same system of
generating vectors. As Table 5 shows, the rhombic lattice can be obtained from the rectangular lattice
by inserting a lattice point at the center of each rectangle. For this reason it is sometimes called a
Centered rectangular lattice. On the other hand, two distinct generator systems, the Hexagonal and
the Trigonal, determine the same lattice. Patterns with symmetries of each of the 17 planar space
groups are discussed in many fine books such as (Coxeter 1971).

7.2 3d Space Groups

Generalization of the planar case to get the 230 space groups in E3 is fairly straightforward. One
simply introduces a third symmetry vector c and its translation Tc and considers all possible ways
to combine them with the planar generators in Table 5. The task is simplified by the fact that all
the planar generators appear also in the 3d space groups without change in form or notation. Some
complexity arises from the fact that there are 14 different lattice types in 3d.

All possible relations of vector a to vector b are enumerated in Table 5. Their possible relations to
the third vector c are governed by the 3d crystal systems and holohedry in Figs. 6 and 7. From Fig. 7
we see immediately that we can choose c orthogonal to a in every 3d crystal system, and c must then
be orthogonal to b in every crystal system except the Cubic system.

As an example of how to construct the 3d space groups and generators from the 2d case, note
that all the 2d crystal classes 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, appear also as 3d crystal classes in Table 4.
Simply by combining Tc (but not c) with all the planar group generators in Table 5, we get all the 3d
space groups in those classes. Each of the 17 planar groups branches into several 3d groups depending
on how Tc is combined with their generators. The only new kind of generator arising from this is
the fusion of Tc with a rotation versor ab to produce a screw displacement. To be specific, since c is
orthogonal to a and b with

(ab)p = (ab)p = −1, (93)

we can construct a screw displacement versor

S = abT 1/p
c = T 1/p

c ab, (94)

with the property
Sp = −Tc

.= Tc. (95)

In this case, the screw axis passes through the origin in the direction of c. Note the similarity of the
screw equations (94) and (95) to the glide-reflection equations (90) and (91). The screw axis can also
be displaced from the origin like it is for a glide-reflection in (92).
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In the other 3d space groups the reflection vector c comes into play. However, its fusion with
translations to produce new space groups does not differ in any essential way from the cases we have
already considered. Of course, in some space groups c is not fused with any translation. The simplest
example is the generalization of the 2d space inversion in equation (84) to the 3d space inversion point
group 22 generated by the trivector I0 = (e0 ∧ e)I = EI. This particularizes the general definition
of space inversion by (78). The corresponding space group 22/ is the symmetry group for a triclinic
lattice.

Note: A patent is pending on application of the homogeneous method to crystallographic modeling
and analysis.

Acknowledgement: The author is indebted to Jeremy Holt and Patrick Reany for valuable help in
analyzing the space groups and preparing the manuscript.
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