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UNIVERSAL GEOMETRIC ALGEBRA

David Hestenes

The claim that Clifford algebra should be regarded as a universal geometric algebra is

strengthened by showing that the algebra is applicable to nonmetrical as well as metrical

geometry. Clifford algebra is used to develop a coordinate-free algebraic formulation of

projective geometry. Major theorems of projective geometry are reduced to algebraic

identities which apply as well to metrical geometry. Improvements in the formulation

of linear algebra are suggested to simplify its intimate relation to projective geometry.

Relations among Clifford algebras of different dimensions are interpreted geometrically

as “projective and conformal splits.” The conformal split is employed to simplify and

elucidate the pin and spin representations of the conformal group for arbitrary dimension

and signature.

INTRODUCTION

Alfred North Whitehead promoted the idea of UNIVERSAL ALGEBRA in his monu-
mental treatise of 1897 [1]. He proposed two candidates for this lofty title, the algebra of
Boole and Grassmann’s Algebra of Extension. Boolean algebra has since secured universal-
ity status in Set Theory and Symbolic Logic, although only the former is universally known
and used by mathematicians. However, Whitehead’s work on Grassmann Algebra, which
ironically is much the larger portion of his treatise, has been almost totally ignored.

Grassmann algebra has been making a comeback among mathematicians in recent decades,
primarily in the guise of differential forms. But this has involved only the half of Grass-
mann’s algebra generated by his progressive product, while his regressive product remains
unappreciated along with Whitehead’s elaborate treatment of it.

Of course, the regressive product was designed to perform an important mathematical
function which must be handled by other means in modern mathematics. As Gian-Carlo
Rota and coworkers ([2],[3]) have vigorously argued, the result has been a step backward in
conceptual clarity and computational efficiency. I agree that the regressive product should
be revived, but I wish to go further.

I claim that Grassmann and Whitehead were just one step away from a mathematical
system that truly deserves to be regarded as a UNIVERSAL GEOMETRIC ALGEBRA.
That system is known in mathematics as Clifford algebra. However, the true universality
of Clifford algebra has remained unrecognized, even by mathematicans specializing in the
subject. The main reason, I suppose, is that the demonstration of universality requires a
wholescale reorganization and redesign of mathematics, integrating into a single mathemat-
ical system such superficially disparate systems as quaternion calculus, differential forms
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and vector analysis. The result is much more than a set of axioms for Clifford algebra along
with a few theorems revealing the structure of the algebra. It is a fullblown mathematical
language for expressing and elaborating geometric ideas of every sort. I have been engaged
in for many years in developing this system into a unified geometrical language for physics
as well as mathematics ([4],[5],[6],[7],[8]), and demonstrating its wide applicability. The
ideas and insights of hundreds of mathematicians and physicists have been incorporated
into the design of the language. I have learned that most (if not all) of the important
insights have occurred to many people independently. Accordingly, I regard the system
as a whole as a community creation rather than the work of a few individuals. And to
emphasize the geometric universality of Clifford algebra, I insist on following the lead of
Clifford himself by calling it geometric algebra instead.

Clifford algebra is commonly regarded as “the algebra of a quadratic form.” This, it
seems, has been a major barrier to recognizing the geometric universality of the algebra.
For it suggests that Clifford algebra is inapplicable to nonmetrical geometry. The main
objective of this article is to dispel that misconception conclusively by showing explic-
itly how nonmetrical geometry can be handled with Clifford algebra. We shall see how
Grassmann’s progressive and regressive products can be defined within Clifford algebra and
employed in a coordinate-free algebraic formulation of projective geometry. This approach
has a number of advantages. First, the complementary algebraic and synthetic approaches
to projective geometry are brought much closer together, because the primitives in the syn-
thetic formulation correspond directly to algebraic entities and operations. Accordingly, it
becomes easier to combine the advantages of both approaches. Second, the algebraic meth-
ods of projective and metrical geometry are unified perfectly. This should help integrate the
deep ideas of projective geometry with the rest of mathematics. Third, some improvements
in linear algebra are suggested to increase its geometrical perspicacity and computational
power.

After formulating projective geometry and its relatlon to linear algebra in the language
of geometric algebra, we examine its relations to affine and metrical geometry. We find that
these relations are naturally expressed by certain features in the multiplicative structure of
Clifford algebras which have hitherto been without geometric interpretation.

This insight helps refine the formulation of spin and representations of the conformal
group to integrate the alternative representations of previous authors. This article is de-
voted to a compact mathematical formulation and discusslon of the above ideas and results.
Proofs, elaborations and further details are contained in two lengthy articles ([9], [10]).

1. GEOMETRIC ALGEBRA

I like to distinguish between a linear space and a vector space. A linear space is defined
as usual by the operations of addition and scalar multiplication, while a vector space is a
linear space on which the geometric product is also defined. Thus, I regard the geometric
product as one of the essential properties defining the concept of “vector.”

As the geometric product has not yet received the universal recognition I think it deserves,
I must repeat its simple definition here. It is defined by the usual associative and distributive
rules together with the special rule that the square of any vector is some scalar.

The last rule implies that an n-dimensional vector space Vn is not closed under the
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geometric product. Rather, by addition and multiplication it generates a geometric (or
Clifford) algebra G(V). For present purposes, the scalars in G are to be identified with the
real numbers. To facilitate the discussion, I need to review some definitions and properties
of G (fully treated in [5],[7],[4]). From geometric products ab and ba of two vectors, two
new products can be defined: the scalar-valued inner product

a · b = 1
2 (ab + ba), (1)

and the bivector-valued outer product

a ∧ b = 1
2 (ab − ba). (2)

Thus, we have three kinds of product, related by

ab = a · b + a ∧ b. (3)

The antisymmetrized product of vectors a1, a2, . . . , ak is a blade of step k or k-blade, denoted
by

<a1a2 . . . ak >k = a1 ∧ a2 ∧ . . . ∧ ak. (4)

The outer product so defined for any number of vectors can be identified with Grassmann’s
progressive product.

The elements of Gn are called multivectors. For any multivector M , the k-vector part
<M >k is a multivector of step k. A k-vector is a k-blade if and only if it can be expressed
as the outer product of k vectors. The main antiautomorphism of Gn is called reversion.
The reverse M† of M is characterized by

<M†>k = <Mk >† = (−1)k(k−1)/2 <M >k . (5)

For k = 0, <M >0 denotes the scalar part of M .
The inner and outer products defined for vectors by (1) and (2) can be extended to blades.

For blades A and B of step r and s respectively, they are defined by

A ∧ B = <AB>r+s = (−1)rsB ∧ A, (6)

A · B = <AB>r−s = (−1)s(r−s)B · A for r ≥ s. (7)

Obviously A∧B is an (r + s)-blade. It can be proved that A · B is an (r− s)-blade as well.
A large number of identities involving inner and outer products are developed in [5]. They
endow geometric algebra with great computational power. They include all the identities
in the theory of determinants [5] and all identities in the vector calculus of Gibbs [7]. We
see below that they include, as well, all algebraic identities in projective geometry. This is
what we expect of a universal geometric algebra.

The outer product of k vectors (4) vanishes if and only if the vectors are linearly de-
pendent. Therefore Gn contains a non-vanishing blade I = <I >n of maximal step n, and
all other n-blades are scalar multiples of I. Let us refer to I as the pseudoscalar of Gn.
A blade A is said to be nonsingular if A2 6= 0. If I is nonsingular, then Gn is said to be
nondegenerate. This is equivalent to saying that the inner product a · b defines a bilinear
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form. We will be concerned only with nondegenerate algebras. If Vn has signature (r, s)
with r+s = n and s = 0 indicating Euclidean signature, I will write Vn = V(r, s). It follows
that

II† = (−1)s|I|2, (8)

where |I|2 is a positive scalar. This determines a unique inverse for I and enables us to
define the duality automorphism of Gn.

The dual Ã of an r-blade A is defined by

Ã = AI−1 = A · I−1 = (−1)r(n−r)I−1A. (9)

(This corrects an important misprint on p.7 of [8].) The inner and outer products are
related by duality. Specifically, for step A = r and step B = s,

A · (BI) = (A ∧ B)I = (−1)s(n−s)(AI) · B (10)

or equivalently,

(A ∧ B)˜ = A · B̃ = (−1)s(n−s)Ã · B. (11)

2. THE ALGEBRA OF SUBSPACES

To every r-dimensional subspace Vr in Vn there corresponds an r-blade A = <A>r such
that Vr is the solution set of the equation

x ∧ A = 0. (12)

Let A be called the blade of Vr while Vr is called the support of A. Since A has a definite
orientation and magnitude |A| (defined as in (8)), it associates an oriented weight or measure
with Vr. Thus, every blade in Gn determines a unique weighted subspace of Vn.

Let Bn be the set of all blades in Gn including the scalars as 0-blades. This set is closed
under the inner and outer products (6) and (7). Therefore, under these operations Bn can
be regarded as an algebra of weighted subspaces in Vn. Note that Bn is not closed under
addition, though some of its subsets are. With addition all of Gn can be generated from
Bn. The algebra Bn is metrical, so its structure depends on the signature of Vn. However,
it contains a nonmetrical subalgebra which is independent of signature.

For blades A and B, we define a new product A ∨ B by

A ∨ B = Ã · B. (13)

This is Grassmann’s regressive product. With this definition, Grassmann’s entire algebra
of extension has been perfectly imbedded in geometric algebra. All the properties of the
regressive product follow immediately from the properties of the inner product and duality.
Thus, it can be shown that for step A + step B > n the regressive product is associative
and is related to the outer product by the “De Morgan” rule

(A ∨ B)˜ = Ã ∧ B̃. (14)
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Moreover, these results are independent of signature, because the effect of duality in Ã · B
is to change the inner product to an outer product in accordance with (10). This fact is so
important that it deserves further discussion.

Blades which are the duals of vectors are called covectors (or pseudovectors). Each
covector A determines a hyperplane in Vn according to the (nonmetrical!) equation (12).

However, by introducing the vector a = Ã, the hyperplane equation can be put in the
alternative form

a · x = Ã · x = (x ∧ A)I−1 = 0. (15)

The inner product on the left side of this equation suggests a metrical dependence, but
the right side of the equation shows otherwise. In fact, the inner product here plays the
nonmetrical role of a contraction. Note that ω(x) = a · x = Ã · x is a linear form on Vn,
and every linear form can be defined in this way. It has become standard practice in linear
algebra recently to represent covectors by linear forms. This is the backward step which
Grassmann alluded to earlier. The result is a loss of clarity as well as computational power.
It should be clear that the whole theory of linear forms (including differential forms) is
automatically included in the algebra Bn ([6], [5]). When the regressive product is used
always in place of the inner product, the resulting algebra, B′

n say, is Grassmann’s extension
algebra. Of course the inner product can be recovered if the duality is introduced as an
independent operation.

With the geometric product, meet and join, products of blades can be defined which
correspond uniquely to standard subspace meet and join operations on their supports.
When step A + step B > n the meet of A and B is given by A ∨B, and its support is the
subspace meet (or intersection) of the supports of A and B. Similarly, the join is given by
A∧B when A∧B 6= 0. These definitions of meet and join can be extended to apply to all
cases [9], but we need not go into that.

The important point to be made here is that the lattice structure of subspaces under
the meet and join operations [11] is faithfully represented in the Grassmann algebra of
blades B′

n. Of course, the blade algebra is a more powerful system than the subspace
lattice, because it can represent subspace weights and orientations. However, if desired it
can easily be reduced to a lattice in the following way. Let blades A and B be regarded
as projectively equivalent if and only if A = λB where λ is a nonzero scalar. Express this
equivalence by writing

A =̇ B. (16)

Then (6) and (14) give us
A ∧ B =̇ B ∧ A,

A ∨ B =̇ B ∨ A.
(17)

Thus, under projective equivalence all information about signs (hence orientations) is lost,
and the meet and join operations on blades are commutative just as they are on subsets. It
is an easy (but worthwhile) exercise to determine what else is needed to reduce the blade
algebra B′

n to a lattice. This establishes what I believe is a very important connection
between lattice theory and geometric algebra.
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3. PROJECTIVE GEOMETRY

The power and universality of geometric algebra derives in part from the many different
geometric interpretations which can be assigned to the algebra as a whole or to some
substructure within it. We obtain a representation of projective geometry within geometric
algebra by adopting the standard identification of points in projective space Pn−1 with
rays in the vector space Vn. Thus, vectors a and b represent the same point if and only if
a ∧ b = 0, or equivalently a =̇ b.

In projective geometry the join of distinct points a and b is line A, as expressed by the
equation

A = a ∧ b. (18)

Similarly, the join of three distinct points a, b, c is a plane

J = a ∧ b ∧ c. (19)

Strictly speaking the 2-blade A is a representation of the line determined by a and b rather
than the line itself, which is a set of points. But, since A determines the line uniquely by
(12), identification of A with the line it determines is a convenient locution.

Two distinct lines A and B intersect at a point if and only if A∧B = 0. In the projective
space P2, equation (12) applies, as the point of intersection d is given by d = A ∨ B.
Therefore, the condition that lines A, B are concurrent with line C is

d ∧ C = (A ∨ B) ∧ C = A ∧ (B ∨ C) = 0. (20)

These examples show how the nonmetrical incidence relations of projective geometry are
represented by meet and join products in geometric algebra.

The representations are so simple because the primitives of synthetic geometry, such
as point, line, plane, meet, and join have exact counterparts in the algebra. One of the
essentials making this possible has been the coordinate-free development of the algebra. The
great simplification this entails can be seen by comparing (18) with the “classical Plücker
coordinates” for a line, which (18) yields when decomposed in a coordinate system [5].

To illustrate the use of geometric algebra for stating and proving theorems in projective
geometry, consider the famous theorem of Desargues, which concerns the configuration of
lines and points shown in Fig. 1. Given the two triangles as shown in the figure, corre-
sponding verticies of the triangles determine the three lines

P = a ∧ a′, Q = b ∧ b′, R = c ∧ c′, (21)

while corresponding sides intersect in the three points

p = (b ∧ c) ∨ (b′ ∧ c′),

q = (c ∧ a) ∨ (c′ ∧ a′),

r = (a ∧ b) ∨ (a′ ∧ b′).

(22)

Geometric algebra can be used to derive from this what may fairly be called Desargues

identity [9]:
p ∧ q ∧ r = (JJ ′)2(P ∨ Q) ∧ R (23)
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where J = a ∧ b ∧ c and J ′ = a′ ∧ b′ ∧ c′.
Desargues theorem simply says that the left side of (23) vanishes if and only if the right

side vanishes; in synthetic terms, the points p, q, r are collinear if and only if the lines

P , Q, R are concurrent. Of course, Desargues’ theorem could have been derived from the
weaker identity p∧ q ∧ r =̇ (P ∨Q)∧R, since the factor (JJ ′)2 in (23) is just a scalar. The
identity (23) transcends projective geometry and applies equally well in metrical geometry,
whatever the signature.

I have employed the geometric algebra G3 (with Euclidean signature) to derive Desargues
identity [9], and it applies as well to the formulation and proof of all theorems about the
projective plane P2. Exactly the same algebra is employed as the language for classical
mechanics in [7]. Therefore the identity of Desargues must be expressible as an identity in
the standard vector algebra of Gibbs. In the interest of revealing the common structure of
widely separated subjects, let me show how that can be done. As shown in [7], the vector
cross product a × b is the dual of a ∧ b in G3. Therefore

a × b = (a ∧ b)I−1 = (a ∧ b)˜ = ã ∨ b̃. (24)

This gives us new insight into the cross product. It shows that the cross product, which
is peculiar to three dimensions, is a special case of the meet, which applies to spaces of any
dimension. It also supplies a geometrical interpretation of a×b as the intersection of planes
in V3 (or lines in P2). The various factors in Desargues identity (23) have the following
expressions in terms of the cross product

p ∧ q ∧ r = (p · q × r)I

= [(b × c) × (b′ × c′)] · [(c × a) × (c′ × a′)] × [(a × b) × (a′ × b′) ] I,

(P ∨ Q) ∧ R = (a × a′) · (b × b′) × (c × c′) I,

(JJ ′)2 = (a · b × c)2(a′
· b′ × c′)2. (25)
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When these are substituted into (23) one gets a much more complicated identity than is
ordinarily considered in vector calculus. The marvel is the simple geometry underlying
this complexity. This illustrates the importance of developing diagrammatic techniques for
interpreting algebraic relations, an underdeveloped subject. By the way, if the vectors in
the two triangles are all taken to be unit vectors, then (23) becomes a relation between
spherical triangles. Spherical trigonometry is developed in terms of G3 in appendix A of
[7].

Many other theorems of projective geometry are reduced to algebraic identities in [9],
and the theory of poles and polars is reduced to algebraic duality.

The whole theory of projective geometry is ripe to be reworked in the language of geo-
metric algebra to integrate it fully with the rest of mathematics, which could profit by the
insights it provides into mathematical structure. This is a large task which someone should
pick up and pursue vigorously. I am sure that it will produce new mathematical insights as
well as recover many old insights which are unknown to most mathematicians today.

4. LINEAR ALGEBRA

Linear algebra grew up with projective geometry. But conventional formulations do not
do justice to the fundamental concepts of meet, join and duality in projective geometry.
This defect has been corrected in [5] by introducing geometric algebra into the foundations
of linear algebra. Here we note the projective interpretation of key ideas and results in [5].

The main idea is to introduce the concept of outermorphism as a fundamental concept
of linear algebra. An outermorphism is the natural extension of a linear transformation f
on Vn to a linear transformation f on Gn, defined as follows for the k-blade of (4),

f(a1, a2, . . . , ak) = (fa1) ∧ (fa2) ∧ · · · ∧ (fak). (26)

Consequently, the outer product of blades is preserved, as expressed by

f(A ∧ B) = (fA) ∧ (fB). (27)

This implies also that the step of every blade is an invariant of the outermorphism. Of
course, the outermorphism merely makes explicit a concept which is inherent in linear
algebra. For example, the concept of determinant derives from the outermorphism of the
pseudoscalar I, as expressed by

fI = (det f) I. (28)

The linear transformations with nonvanishing determinant can all be interpreted projec-
tively as collineations. The outermorphism is precisely what is needed to prove that they
map points into points, lines into lines, planes into planes, etc. The result follows from the
fact that the form of equation (12) is an invariant of the mapping. Indeed, (4) maps into

x′ ∧ A′ = (fx) ∧ (fA) = 0 (29)

and det f 6= 0 implies that A′ = fA 6= 0 whenever A 6= 0.
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Every linear transformation f has an adjoint (or transpose) transformation f , and this
can be extended to any outermorphism denoted by f also. The adjoint transformation can
be defined directly in terms of f by

<M f N >0 = <(f N)M >0 = <N fM >0, (30)

assumed to hold for all M, N in Gn.
In, contrast to the outer product, the inner product is not generally preserved by an

outermorphism. Rather, it obeys the fundamental transformation law

A · ( f B) = f [(fA) · B], (31)

which holds for (step A) ≤ step B and for interchange of f and f . When I first encountered
this law in [5] I was greatly puzzled as to its geometric meaning and import. Its importance
is evident in applying it to the special case B = I, which produces immediately an explicit
expression for the inverse outermorphism

f−1A =
f (AI)I−1

det f
. (32)

Note how clearly this shows the essential roles of the adjoint and double duality in com-
puting the inverse of a linear transformation.

The full meaning of (31) did not dawn on me until I derived in [10] the following trans-
formation law for the meet

(fA) ∨ (fB) = (det f)f(A ∨ B). (33a)

The factor (det f) can be removed by defining duality on the left with respect to the
transformed pseudoscalar I ′ = fI = (det f)I. Then (32) implies that the transformation

A′ = fA entails the induced transformation Ã = f Ã′ on the dual Ã′ = A′(I ′)−1, and (33a)
can be put in the form

f [Ã · B] = Ã′
· B′. (33b)

This transformation law is mathematically equivalent to (31) for det f 6= 0, but, in contrast,
its geometric meaning is transparent. It tells us that the “incidence properties” in projective
geometry are invariant under collineations, or alternatively, that the “subspace intersection
property is preserved by nonsingular linear transformations. I think (33a,b) should be
counted as one of the fundamental results of linear algebra, but, as far as I know, this is
the first time it has been published, though I suppose an equivalent result must lie buried
in the works of the old masters of projective geometry.

5. PROJECTIVE SPLIT AND CROSS RATIO

The points of projective n-space Pn can be represented as rays in Vn+1, as we have already
done, or as vectors in Vn. The change in representation from Vn to Vn+1 is accomplished by
introducing homogeneous coordinates. I aim to show now that geometric algebra enables
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us to express this relation between Vn and Vn+1 in an algebraic coordinate-free form which
is intimately related to the formal structure of geometric algebra.

Let x and e0 be vectors in Vn+1 with e
2
0 6= 0. For fixed e0 and variable x, define Vn as

the set
Vn = {x ∧ e0}. (34)

It is readily verified that Vn is a vector space under the geometric product, and the algebra
Gn = G(Vn) that it generates is just the even subalgebra of Gn+1 = G(Vn+1), as expressed
by

Gn = G+
n+1. (35)

From (34) we see that Vn can be interpreted projectively as the pencil of all lines through

the point e0. This provides projective interpretation for the relation of a geometric algebra
to its even subalgebra.

The function x∧e0 is a linear mapping of Vn+1 into Vn. The projective mapping relating
each ray {λx} in Vn+1 to a unique vector x in Vn is defined by the following relation

xe0 = x · e0 + x ∧ e0 = x0(1 + x), (36)

where x0 = x · e0 so x = x ∧ e0/x · e0.
Vectors in Vn are denoted in boldface to distinguish them from vectors in Vn+1. I call

the relation of Vn+1 to Vn determined by (36) a projective split of Vn. The same kind of
relation is inherent in physics when spacetime is split into space and time components, but
it was first formulated explicitly in [4]. I call it the spacetime split. Another important
application of the projective split is to “Clifford Analysis” [12]. If Vn+1 has Euclidean
signature, then the projective split implies that Vn has anti-Euclidean signature. This is
precisely the relation among variables in the seemingly different formulation of Clifford
analysis in [5] and [12].

To see how the representation for a line in Pn by a 2-blade a ∧ b in Gn+1, is related to
the representation in Gn, we use the splits ae0 = a0(1 + a) and be0 = b0(1 + b) to derive
(for e

2
0 = 1)

a ∧ b = a0b0(a − b + b ∧ a) = a0b0(u + a ∧ u). (37)

This represents a line with direction u = a − b and moment M = a ∧ u = b ∧ a passing
through the point a in Vn. This interpretation can be verified by performing a similar split
on the equation x ∧ (a ∧ b) for the line, with the result

x ∧ a ∧ b = x0a0b0[(a − x) ∧ u + x ∧ a ∧ u ] e0 = 0. (38)

Thus in Gn the equation for the line is (x− a) ∧ u = 0, and x ∧ a ∧ u = 0 is automatically
satisfied. The “Plücker line coordinates” a ∧ b = u + M are applied to mechanics in Sec.
7–1 of [7].

For three distinct points a, b, c on the same line, the split (37) yields the invariant ratio

a ∧ c

b ∧ c
=

a0

b0

[
a − c

b − c

]
. (39)

This is a projective invariant in two senses: it is independent of the chosen split vector e0,
and it is invariant under collineations. The internal ratio (a−b)/(b−c) is not a projective
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invariant. However, the invariant cross ratio for four distinct points a, b, c, d on the same
line is given by [a ∧ c

b ∧ c

] [
b ∧ d

a ∧ d

]
=

[
a − c

b − c

] [
b − d

a − d

]
. (40)

All the well-known properties of the cross ratio are easily derived from this. The consider-
able advantage of using geometric algebra here should be obvious. It insures, for example,
that division in (40) is well-defined without abuse of notation.

6. CONFORMAL SPLIT AND CONFORMAL GROUP

Geometric algebras can be factored multiplicatively according to the fundamental theo-
rem

Gn+2 = Gn ⊗ G2. (41)

The Kronecker product ⊗ is used here to emphasize that all elements of G2 commute with
all elements Gn, but the product is actually the geometric product defined for Gn+2. I believe
that this theorem has not been exploited to its fullest in applications of Clifford algebra
because it has been lacking a geometric interpretation. The fact that the projective split
by a vector relates Gn+1 to Gn suggests that (41) might be obtained from a similar split
by a 2-blade and so given a similar geometric interpretation. Accordingly, by analogy with
(36), we select a nonsingular 2-blade e0 in Gn+2 and for every x in Vn+2 we perform the
split

xe0 = x · e0 + x ∧ e0 = x0 + ρx (42)

and we define the vector spaces

V2 = {x0 = x · e0 = −e0 · x}, (43)

Vn = {ρx = x ∧ e0 = e0 ∧ x}, (44)

where the boldface x distinguishes a vector in Vn from the corresponding vector x in Vn+2

and ρ is a scale factor to be determined.
Note that elements of V2 do indeed commute with the elements of Vn so the geometric

algebras they generate satisfy (41) as desired. Also, V2 is a 2-dimensional subspace of Vn+2

determined by e0, whereas Vn is the subspace of 3-blades in Gn+2 with e0 as a common
factor. Projectively, the rays of V2 are points on the line e0, while Vn is the pencil of all
planes passing through the line e0. Thus, we have a geometric interpretation for the split.

To have a definite relation between points in Vn and Vn+2 we need to impose restrictions
on the two extra degrees of freedom in V2. There is a natural way to do this if the signature
of V2 is taken to be (1,1), as expressed by V2 = V(1, 1). Our considerations will hold for
any signature (r, s) of Vn = V(r, s), in which case Vn+2 = V(r+1, s+1). With this proviso,
I call the 2-blade split (42) a conformal split, because of its relation to the conformal group
on Vn given below.

Because of its indefinite signature, V2 has a unique basis e+, e− of singular vectors:
e
2
+ = e

2
− = 0. It is convenient to normalize them by

1
2 e+e− = 1 + e0, with e

2
0 = 1. (45)
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Now the value of x0 = x · e0 can be related to x in (42) by imposing the null condition
x2 = 0. As a consequence, (42) can be put in the form

2xe0 = x · e+(e− + x
2
e+ + 2x). (46)

Note that the functional form of the scale factor ρ = x · e+ in (42) is now determined and
can be seen to play the role of a homogeneous coordinate. Thus, by (46) every vector x in
Vn corresponds to a unique ray in the null cone x2 = 0 of Vn+2. This might be the ideal
representation for a systematic treatment of the projective theory of quadratic forms, but
that remains to be seen.

The quadratic equation x2 = 0 is an invariant of the orthogonal group O(r + 1, s + 1) on
Vn+2. Each orthogonal transformation can be put in the canonical form

x′ = Gx(G−1)∗, (47)

where G is a versor in Gn+2 and G∗ is the involute of G. A versor G is a multivector which
can be expressed as the geometric product

G = ± a1a2 . . . ak (48)

of nonsingular vectors. The versor G is said to have odd parity if G∗ = (−1)kG = −G or
even parity if G∗ = G. The versors form a multiplicative group Pin(r + 1, s + 1) called the
pin group of Vn+2. The versors of even parity form a subgroup Spin(r + 1, s + 1) called the
spin group of Vn+2. The transformation (47) is called a rotation if G has even parity. The
group of rotations is the special orthogonal group SO(r + 1, s + 1).

By virtue of the constraint (46), the orthogonal transformation x → x′ defined by (47)
induces a transformation x → x

′ = g(x) of Vn. An explicit relation between G and g is
obtained by combining (46) and (47):

G(e− + x
2
e+ + 2x)Ĝ = σg[ e− + [g(x)]2e+ + 2g(x) ], (49)

where Ĝ = e0(G
−1)∗e0 and σg = σg(x) = x′

· e+/x · e+. This equation can be solved for
g as an explicit function of G if G is expressed in a form which explicitly distinguishes its
parts in G2 and Gn. The most suitable generic form seems to be

G = 1
2 [A(1 + e0) + Be+ + Ce− + D(1 − e0)], (50)

where A, B, C, D are versors in Gn and so commute with e+, e−, e0. From (50) it is
evident that A and D must have the same parity while C and D have the opposite parity.
Moreover, group properties GG−1 = 1 and (47) imply that

AD̃ − BC̃ = ±1 (51)

and ÃB, ÃC, DB̃, DC̃ are in Vn, where Ã = (A∗)† is the reverse in Gn. Aside from these
restrictions the versors are arbitrary.

The solution of (49) for g is most simply and elegantly expressed as a homographic

transformation:
g(x) = (Ax + B)(Cx + D)−1. (52)
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It can be verified that g is a conformal transformation or Vn = V(r, s) and, for the range of
coefficients allowed by (51), gives the entire conformal group C(r, s). Thus we have estab-
lished the 2 to 1 homomorphism between Pin(r + 1, s + 1) and C(r, s). The correspondence
between elements in the two groups is given by (50) and (52). A representation for G which
is less cumbersome than (50) can he obtained by adopting a 2 × 2 matrix representation
for eµ which puts (50) in the matrix form used by Ahlfors [13]:

[ g ] =

[
A B
C D

]
. (53)

This has the advantage that group composition can be carried out by matrix multiplication.
It has the disadvantage of hiding the dependence on e+, e− and e0, along with the geometric
structure that entails. That is evident in Table 1, which displays the elementary group
elements from which all other group elements can be generated.

The versors with even parity in Table 1 generate the group Spin(r+1, s+1). Note that e0

is the only one of those elements which is not continuously connected to the identity. With
e0 excluded Spin(r+1, s+1) is a spin representation of the special conformal group SC(r, s).
Every element in the group can be represented in the canonical form G = ±KaTbDλR where
R = R∗. This has the matrix representation

[KaTbDλR ] =

[
λR bλ−1R
aλR (1 + ab)λ−1R

]
, (54)

which relates it directly to g by (52). In the pin group, the transversion can be reduced to
a composite of two inversions by Kb = e1Tbe1.

Mathematicians have considered the spin and pin representations of the conformal group
before by several different approaches ([13], [14], [15]). I believe that the present approach
has the advantage of greater geometrical perspicuity, bringing together the advantages of
the previous approaches by showing how they are related [10]. Spin representations of the
conformal group for spacetime have been considered by physicists in many articles (for
example, [16]). I hope the present formulation wlll clarify and facilitate applications of the
conformal group in the future.
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Table 1. Correspondence between generating elements of Pin(r + l, s + 1) and the full
conformal group C(r.s).

Type Group element

conformal g(x) ⇐⇒ ±G

orthogonal RxR−1 R = a1a2 . . .ak

translation x + a Ta = 1 + 1
2ae+

dilation λ2
x Dλ = eϕe0 , λ = eϕ

transversion
x + bx

2

1 + b · x + b2x2
Kb = 1 + 1

2be−

inversion x
−1

e1 = 1
2 (e+ + e−)

involution −x e0
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[13] L. V. Ahlfors, Clifford Numbers and Möbius Transformations in Rn. In Clifford Al-

gebras and their Applications in Mathematical Physics, J. S. R. Chisholm and A. K.
Common (eds.), D. Reidel Publ. Co., Dordrecht/Boston (1986).

[14] P. Angles, Construction de revêtements du groupe conforme d’un espace vectoriel muni

d’une metrique de type (Γ, q), Ann. Inst. Henri Poincaré, 33 (1980) 33.
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