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On Decoupling Probability from

Kinematics in Quantum Mechanics

David Hestenes

Abstract.A means for separating subjective and objective aspects of the
electron wave function is suggested, based on a reformulation of the Dirac
Theory in terms of Spacetime Algebra. The reformulation admits a separa-
tion of the Dirac wave function into a two parameter probability factor and
a six parameter kinematical factor. The complex valuedness of the wave
function as well as its bilinearity in observables have perfect kinematical
interpretations independent of any probabilistic considerations. Indeed,
the explicit unit imaginary in the Dirac equation is automatically identi-
fied with the electron spin in the reformulation. Moreover, the canonical
momentum is seen to be derived entirely from the rotational velocity of
the kinematical factor, and this provides a geometrical interpretation of en-
ergy quantization. Exact solutions of the Dirac equation exhibit circular
zitterbewegung in exact agreement with the classical Wessenhoff model of
a particle with spin. Thus, the most peculiar features of quantum mechan-
ical wave functions have kinematical explanations, so the use of probability
theory in quantum mechanics should not differ in any essential way from
its use in classical mechanics.

Introduction

I believe that quantum mechanics, as generally understood and practiced today, intermixes
subjective and objective components of human knowledge, and furthermore, that we will
not understand the subject fully until those components can be cleanly separated. The
main purpose of this article is to propose a means by which that separation might be
effected. As will be seen, my proposal has many specific and surprising consequences as
well as possibilities for further development.

I regard the Dirac electron theory as the fundamental core of current quantum mechanics.
It is from the Dirac theory that the most precise and surprising consequences of quantum
mechanics have been derived. Some would claim that quantum field theory is more funda-
mental, but one can argue that field theory is merely a formal device for imposing boundary
conditions of the single particle theory to accommodate particle creation and annihilation
along with the Pauli principle [1]. For these reasons, it is to the Dirac theory that I look
to understand the role of probability in quantum mechanics. We shall see that the Dirac
theory supplies insights into the significance of quantum mechanical wave functions that
could not possibly be derived from the Schrödinger theory.

To separate subjective and objective components of the Dirac Theory I suggest that we
need two powerful conceptual tools. The first tool is the Universal Probability Calculus
which has been synthesized and expounded so clearly by Ed Jaynes and amply justified by
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many applications discussed in these Workshops and elsewhere. Fortunately, this calculus
is so familiar to workshop participants that I need not spell out any of the details, though
the calculus is still not appreciated by most physicists. However, I should reiterate the
major claims for the calculus which explains its relevance to the interpretation of quantum
mechanics. First of all, the calculus is universal in the sense that it is applicable to any
problem involving interpretions and explanations of experimental data with mathematical
models. Thus, the calculus provides a universal interface between theory and experiment.
Secondly, the calculus provides the basis for unambiguous distinctions between subjective
and objective knowledge. Probabilities are always subjective; they describe limitations
on objective knowledge about the real world rather than properties of the real world it-
self. Jaynes has applied the calculus brilliantly to cleanly separate subjective and objective
components of statistical mechanics. It should be possible to do the same in quantum
mechanics.

The very generality of the probability calculus is one of its inherent limitations. Objective
knowledge enters the calculus only through the Boolean algebra of propositions, and this
does not take into account the general implications of spacetime structure for probabilistic
reasoning about the physical world. To remedy this deficiency, I propose to employ another
powerful conceptual tool which I call the Universal Geometric Calculus. We shall see that
it suggests some extensions of the probability calculus.

Geometric Calculus is a universal mathematical language for expressing geometrical re-
lations and deducing their consequences. As such, it is a natural language for most of
mathematics and perhaps all of physics ([2], [3], [4]). Of special interest here is a portion of
the general geometric calculus called Spacetime Algebra (STA). It can be regarded as the
minimally complete algebra of geometrical relations in spacetime.

When the Dirac theory is expressed in terms of STA a hidden geometric structure is
revealed, and natural explanations appear for some of the most peculiar features of quantum
mechanics [5]. For example, it can be seen that there are geometrical reasons for the
appearance of complex probability amplitudes and the bilinear dependence of observables
on them. The main ideas and insights of this approach are reviewed below. Then they
are applied to achieve the proposed separation between subjective and objective features
of the Dirac theory, resulting in a new concept of “pure state.” A new class of solutions
to the Dirac equations is identified, solutions which clearly exhibit circular zitterbewegung
and suggest that it is an objective property of electron motion independent of probabilistic
aspects of the theory, in general agreement with earlier speculations [6]. This is illustrated
by a new kind of free particle solution to the Dirac equation.

All of this together indicates a need to integrate probability calculus with geometric
calculus to form a single coherent conceptual system, and it suggests how that might be
accomplished. Geometric calculus is needed to represent objective properties of real objects
in mathematical models and theories. Probability calculus is needed to relate such models
to real phenomena. Thus, the two must be integrated to achieve an integrated world view.

Spacetime Algebra

For the purposes of this paper, we adopt a flat space model of physical spacetime, so each
point event can be uniquely represented by an element x in a 4-dimensional vector space.
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We call x the location of the event, and we call the vector space of all locations spacetime.
Thus, we follow the usual practice of conflating our mathematical model with the physical
reality it supposedly represents.

To complete the mathematical characterization of spacetime, we define a geometric prod-
uct among spacetime vectors u, v, w by the following rules:

u(vw) = (uv)w , (1.1)

u(v + w) = uv + uw , (1.2a)

(v + w)u = vu + wu . (1.2b)

For every vector u and scalar λ
uλ = λu , (1.3)

u2 = a scalar (a real number) . (1.4)

The metric of spacetime is specified by the allowed values for u2. As usual, a vector u is
said to be timelike, lightlike or spacelike if u2 > 0, u2 = 0, u2 < 0 respectively.

Under the geometric product defined by these rules, the vectors of spacetime generate a
real associative algebra, which I call the Spacetime Algebra (STA), because all its elements
and operations have definite geometric interpretations, and it suffices for the description of
geometric structures on spacetime. An account of STA is given in [2], and extended in the
other references. Only a few features of STA with special relevance to the problem at hand
can be reviewed here.

The geometric product of vectors u and v can be decomposed into a symmetric part u · v
and an antisymmetric part u ∧ v as defined by

u · v = 1
2 (uv + vu) (1.5)

u ∧ v = 1
2 (uv − vu) (1.6)

uv = u · v + u ∧ v (1.7)

One can easily prove that the symmetric product u · v defined by (1.5) is scalar-valued.
Thus, u · v is the usual inner product (or metric tensor) on spacetime. The quantity u ∧ v
is neither scalar nor vector, but a new entity called a bivector (or 2-vector). It represents
an oriented segment of the plane containing u and v in much the same way that a vector
represents a directed line segment.

Let {γµ, µ = 0, 1, 2, 3} be a righthanded orthonormal frame of vectors; so

γ2
0 = 1 and γ2

1 = γ2
2 = γ2

3 = −1 , (1.8)

and it is understood that γ0 points into the forward light cone. In accordance with (1.5),
we can write

gµν ≡ γµ · γν = 1
2 (γµγν + γνγµ) , (1.9)

defining the components of the metric tensor gµν for the frame {γµ}.
Representations of the vectors γµ by 4 × 4 matrices are called Dirac matrices. The

Dirac algebra is the matrix algebra over the field of the complex numbers generated by the
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Dirac matrices. The conventional formulation of the Dirac equation in terms of the Dirac
algebra can be replaced by an equivalent formulation in terms of STA. This has important
implications. First, a representation of the γµ by matrices is completely irrelevant to the
Dirac theory; the physical significance of the γµ is derived entirely from their representation
of geometrical properties of spacetime. Second, imaginaries in the complex number field of
the Dirac algebra are superfluous, and we can achieve a geometrical interpretation of the
Dirac wave function by eliminating them. For these reasons we eschew the Dirac algebra
and stick to STA.

A generic element of the STA is called a multivector. Any multivector M can be written
in the expanded form

M = α + a + F + ib + iβ , (1.10)

where α and β are scalars, a and b are vectors, and F is a bivector. The special symbol
i will be reserved for the unit pseudoscalar, which has the following three basic algebraic
properties:

(a) it has negative square,
i2 = −1 , (1.11a)

(b) it anticommutes with every vector a,

ia = −ai , (1.11b)

(c) it factors into the ordered product

i = γ0γ1γ2γ3 . (1.11c)

Geometrically, the pseudoscalar i represents a unit oriented 4-volume for spacetime.
By multiplication the γµ generate a complete basis for the STA consisting of

1, γµ, γµ ∧ γν , iγµ, i . (1.12)

These elements comprise a basis for the 5 invariant components of M in (1.10), the scalar,
vector, bivector, pseudovector and pseudoscalar parts respectively. Thus, they form a basis
for the space of completely antisymmetric tensors on spacetime. It will not be necessary
for us to employ a basis, however, because the geometric product enables us to carry out
computations without it.

Computations are facilitated by the operation of reversion. For M in the expanded form
(1.10), the reverse M can be defined by

M̃ = α + a − F − ib + iβ . (1.13)

Note, in particular, the effect of reversion on scalars, vectors, bivectors and pseudoscalars:

α̃ = α, ã = a, F̃ = −F, ĩ = i .

Reversion has the general property

(MN)˜ = ÑM̃ , (1.14)
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which holds for arbitrary multivectors M and N .
Having completed the preliminaries, we are now equipped to state a powerful theorem

of great utility: Every Lorentz transformation of an orthonormal frame {γµ} into a frame
{eµ} can be expressed in the canonical form

eµ = RγµR̃ , (1.15)

where R is a unimodular spinor, which means that R is an even multivector satisfying the
unimodularity condition

RR̃ = 1 . (1.16)

A multivector is said to be even if its vector and trivector parts are zero. The spinor R is
commonly said to be a spin representation of the Lorentz transformation (1.15).

The set {R} of all unimodular spinors is a group under multiplication. In the theory of
group representations it is called SL(2,C) or “the spin-1/2 representation of the Lorentz
group.” However, group theory alone does not specify its invariant imbedding in the STA.
It is precisely this imbedding that makes it so useful in the applications to follow.

Classical Electrodynamics and Particle Mechanics

The electromagnetic field F = F (x) is a bivector-valued function on spacetime. The ex-
pansion of F in a bivector basis,

F = 1
2Fµνγµ ∧ γν (2.1)

shows its relation to the usual field by tensor components Fµν . However, because STA
enables to coordinate-free manner.

The derivative with respect vector differential operator coordinate derivatives by

= γµ∂µ (2.3)

where
∂µ =

∂

∂xµ
= γµ · . (2.4)

It will recognized that the matrix representation of (2.3) where the γµ are replaced by Dirac
matricies is the famous “Dirac operator.” However, STA reveals that the significance of this
operator lies in its role as the fundamental differential operator on spacetime, rather than
in any special role in quantum mechanics or even spinor mechanics.

Since is a vector operator, we can use (1.7) to decompose the derivative of a vector
field A = A(x) into divergence · A and curl ∧ A; thus

A = · A + ∧ A . (2.5)

Taking A to be the electromagnetic vector potential and imposing the “Lorentz condition”

· A = 0 , (2.6)
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we have
F = ∧ A = A . (2.7)

Maxwell’s equation for the E.M. field can then be written

F = 2A = Je, (2.8)

where Je = Je(x) is the (electric) charge current (density).
Equation (2.8) describes the production and propagation of E.M. fields equally well in

classical and quantum theories, but it must be complemented by an equation of motion
for charged particles which describes the effects of the E.M. field. The ordinary classical
equation of motion for a charged particle seems so different from the quantum mechanical
equation that they are difficult even to compare. However, STA admits a new formulation
of the classical equation which greatly clarifies its relation to quantum theory.

The equation
eµ = RγµR̃ (2.9)

can be used to describe the relativistic kinematics of a rigid body (with negligible dimen-
sions) traversing a world line x = x(τ) with proper time τ , if we identify e0 with the proper
velocity v of the body (or particle), so that

dx

dτ
= v = e0 = Rγ0R̃ . (2.10)

Then eµ = eµ(τ) is a comoving frame traversing the world line along with the particle,
and the spinor R must also be a function of proper time, so that, at each time τ , equation
(2.9) describes a Lorentz transformation of some fixed frame {γµ} into the comoving frame
{eµ(τ)}. Thus, we have a spinor-valued function of proper time R = R(τ) determining a
1-parameter family of Lorentz transformations.

The spacelike vectors ek = RγkR̃ (for k = 1,2,3) can be identified with the principal axes
of the body in some applications, but for a particle with an intrinsic angular momentum
or spin, it is most convenient to identify e3 with the spin direction ŝ; so we write

ŝ = e3 = Rγ3R̃ . (2.11)

From the fact that R is an even multivector satisfying RR̃ = 1, it can be proved that
R = R(τ) must satisfy a spinor equation of motion of the form

Ṙ = 1
2ΩR , (2.12)

where the dot represents the proper time derivative, and Ω = Ω(τ) = −Ω̃ is a bivector-
valued function. Differentiating (2.9) and using (2.12), we see that the equations of motion
for the comoving frame must be of the form

ėµ = 1
2 (Ωeµ − eµΩ) ≡ Ω · eµ . (2.13)

Clearly Ω can be interpreted as a generalized rotational velocity of the comoving frame.
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For a classical particle of mass m and charge e moving in an external E.M. field F , we
take Ω = em−1F and from (2.13) with µ = 0 we get (in units with the speed of light c = 0)

mv̇ = eF · v . (2.14)

This is the classical equation of motion where the right side is the Lorentz force. On the
other hand, (2.12) gives us

Ṙ =
e

2m
FR . (2.15)

This spinor equation of motion implies the conventional equation (2.14), so it determines
the same world line, but it gives us much more. First, it is easier to solve; solutions for
various external fields are given in [7]. Second, it gives immediately a classical model for a
particle with spin; by (2.11) and (2.13) with µ = 3, the equation of motion for the spin is

ṡ =
e

m
F · s . (2.16)

This is, in fact, the spin precession equation for a particle with gyromagnetic ratio g = 2,
exactly the basic value of g implied by the Dirac theory. This is no accident, for the greatest
advantage of (2.15) is that the spinor R can be related directly to the Dirac wave function,
thus enabling a close comparison of classical and quantum equations of motion, as shown
below.

The Real Dirac Theory

This section summarizes (without proof) the formulation of the Dirac electron theory in
terms of STA. Proofs that this is equivalent to the conventional matrix formulation are
given in [8] and [5].

The Dirac wave function ψ = ψ(x) is an even multivector-valued function on spacetime.
It has the Lorentz invariant decomposition

ψ = (ρeiβ)
1
2 R , (3.1)

where R = R(x) is a unimodular spinor, i is the unit pseudoscalar (1.11c), and ρ = ρ(x),
β = β(x) are scalar-valued functions.

The Dirac equation has the real form

ψih̄ + eAψ = mψγ0 , (3.2)

where A = A(x) is the vector potential, h̄ is Planck’s constant over 2π, and the boldface

i = γ2γ1 = iγ3γ0 (3.3)

is a constant bivector which corresponds to the unit imaginary in the matrix formulation of
the Dirac equation. Equation (3.2) is called the real form of the Dirac equation, because it
does not involve complex numbers; it involves only elements of STA, which all have definite
geometrical meaning.
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The physical meaning of ψ is determined by assumptions which relate it to observables.
From (3.1) we can construct the invariant

ψψ̃ = ρeiβ , (3.4)

but this does not elucidate physical meaning. The Dirac probability current J is defined
by

J = ψγ0ψ̃ = ρv , (3.5)

where
v = Rγ0R̃ (3.6)

is the local velocity, so ρ = ρ(x) can be interpreted as the proper probability density. The
Dirac equation implies the probability conservation law

· J = · (ρv) = 0 . (3.7)

The wave function determines everywhere a “comoving frame” {eµ = eµ(x)} by

ψγµψ̃ = ρRγµR̃ = ρeµ , (3.8)

which, of course, includes (3.5). The spin vector s = s(x) is defined by

s =
h̄

2
Rγ3R̃ =

h̄

2
e3 . (3.9)

Actually, angular momentum is a bivector quantity and (as demonstrated in [8]) the ap-
propriate spin bivector S = S(x) is given by

S =
1
2

R ih̄R̃ =
h̄

2
Rγ2γ1R̃ =

h̄

2
e2e1 = isv . (3.10)

This shows exactly the sense in which the imaginary factor ih̄ in the Dirac theory (and
hence in the Schrödinger Theory) can be interpreted as a representation of the electron
spin. The right side of (3.10) relates the spin vector to the spin bivector, so either of them
can be used to describe spin.

The conservation law (3.7) implies that through each point x where ψ(x) �= 0 there is a
unique world line (or bicharacteristic) of ψ with tangent v(x). Along each world line, by
(3.9) and (3.6) the unimodular spinor R(x) uniquely determines the direction of electron
spin as well as the velocity, exactly as in the classical case discussed previously. Thus, the
spinor R can be given the same well-defined kinematic interpretation in both classical and
quantum theory.

The assumptions made so far provide a kinematic interpretation for the factor R in the
wave function. As detailed in [8], one more assumption is needed to complete the Dirac
theory. That is the crucial assumption introducing the energy-momentum operator pµ

defined in STA by
pµψ = ∂µψih̄ − eAµψ . (3.11)
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(The underbar in pµ is meant to indicate a linear operator.) This operator can be introduced
by the following definition of the electron energy-momentum tensor components

Tνµ = 〈 γ0ψ̃γν pµψ 〉 = 〈 γν(pµψ)γ0ψ̃ 〉 , (3.12)

where 〈M 〉 means “scalar part of M .” Accordingly, the energy momentum flux through a
hyper-surface with normal γν is Tγν = Tνµγµ. So the proper energy momentum density
ρp, defined as the flux in the direction v, is given by

ρp = Tv = vνTνµγµ , (3.13)

where vν = γν · v. The components of the energy-momentum density are therefore given
by

ρpµ = ρp · γµ = vνTνµ = 〈 v(pµψ)γ0ψ̃ 〉 . (3.14)

Insight into the kinematic significance of this relation is obtained by introducing the canon-
ical decomposition for ψ.

From the fact that R is a unimodular spinor, it can be proved that its partial derivatives
have the form

∂µR = γµ · R = 1
2ΩµR , (3.15)

where Ωµ = −Ω̃µ is a bivector quantity representing the rate of rotation for a displacement
in the direction γµ. The derivatives of the frame {eµ} in (3.9) can therefore be put in the
form

∂µeν = Ωµ × eν = Ωµ · eν , (3.16)

where × signifies the commutator product defined by A×B = 1
2 (AB −BA). Similarly, the

derivatives of the spin (3.10) have the form

∂µS = Ωµ × S . (3.17)

Now with the help of (3.10), (3.15) and (3.17) we can write

∂µR ih̄R̃ = ΩµS = Pµ + iqµ + ∂µS , (3.18)

where Pµ and qµ are defined by
Pµ = Ωµ · S , (3.19)

iqµ = Ωµ ∧ S . (3.20)

Finally, using (3.18) to evaluate ∂µψ in (3.14) we get

pµ = Pµ − eAµ = Ωµ · S − eAµ . (3.21)

This result is striking, because it shows that pµ has a purely kinematical dependence on
the wave function independent of the parameters ρ and β. It shows that pµ depends on the
rotation rate Ωµ only through its projection onto the spin plane. This, in turn, gives insight
into the geometrical meaning of quantization in stationary states; for the requirement that
the wave function be single-valued implies that the comoving frame (3.8) be single-valued,
so along any closed curve it must rotate an integral number of times; according to (3.21),
therefore, we should have∮

(p + eA) · dx =
∮

P · dx =
∮

(dxµΩµ) · S = 1
2nh̄ , (3.22)

where n is an integer. Thus, we have a geometric interpretation of the electron energy-
momentum vector and its relation to quantization. That is what we need to separate
probabilistic and kinematical components of the Dirac theory in the next section.

9



Separating Kinematics from Probabilities

The STA formulation of the Dirac theory in the preceding section suggests that the wave
function decomposition ψ = R(ρeiβ)

1
2 has a fundamental physical significance besides being

“relativistically invariant.” For it reveals that the kinematics of electron motion (specifi-
cally the values of velocity, spin and energy-momentum) are completely determined by the
unimodular spinor R and its derivatives ∂µR = 1

2ΩR. On the other hand, ρ has an obvious
probabilistic interpretation and we shall see how β might be given one as well. Thus, it
appears that ψ can be decomposed into a purely kinematic factor R and a probabilistic
factor (ρeiβ)

1
2 . These factors are coupled by the Dirac equation in a way which is difficult

to interpret physically [8]. However, it appears possible to decouple them completely by
using the superposition principle as explained below.

Let us suppose that unimodular solutions of the Dirac equation have a fundamental
physical significance and sanctify this by calling them pure states. A pure state ψ = R

satisfies ψψ̃ = 1. The most common example of a pure state state is a plane wave, but
there are more interesting examples as we shall see. For a plane wave it is ordinarily
supposed that the probability density ρ(x) is uniform, hence unnormalizable, so there is
some question as to its physical significance. Anyway, it is argued that in a plane wave
state the particle position is indeterminate so that, in accordance with the uncertainty
principle, the momentum and velocity have definite values. We shall introduce a different
interpretation of pure states.

Each pure state ψ(x) determines a unique velocity v(x), spin S(x) and momentum p(x)
at each spacetime location x. Let us assume that the electron is a point particle and this
is the state of motion to be attributed to it if it is at a given location x. Thus, the pure
state assigns a definite state of motion to every possible electron location. The dynamics
of electron motion are incorporated into the pure state by requiring that it be a solution of
the Dirac equation. This much is a purely deterministic model of electron motion.

Probabilities enter the theory by assuming that we do not know precisely the electron’s
pure state or location so the state of our knowledge is best described as a weighted average
of pure states indexed by some parameter λ, e.g.

ψ =
∫

dλ wλψλ = R(ρeiβ)
1
2 (4.1)

It is easy to prove that, in general, a superposition of pure states (with ψψ̃ = 1) produces a
state with ψψ̃ = ρeiβ so the factor eiβ arises naturally along with the probability density.
Another way to see that the parameter ρ alone is not enough to describe the result of
averaging process is to suppose that an expected velocity v(x) at x is to be obtained by
averaging velocities vλ(x). To satisfy the relativistic constraint v2 = v2

λ = 1, the average
must have the form ∫

dλ vλ = v cos α , (4.2)

where α could possibly be identified with β. This argument is meant to be suggestive
only. The main idea is that the eiβ in (3.1) is the statistical factor that arises from the
unimodularity constraint on the kinematical factor of the wave function.
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A similarity to Feynman’s path integral formulation of quantum mechanics appears by
interpreting the integral in (4.1) as a sum over paths with unit weight factor wλ = 1.
Feynman assumed

ψ = eiφλ/h̄ ,

where φλ is the classical action along the λ-path. Our theory suggests that this phase
factor should be generalized to a unimodular spinor to account for spin. In that case also
the “statistical factor” on the right side of (4.1) would arise from superposition. This
promising generalization of the Feynman approach will not be pursued here, although
the following sections contain hints on how to carry it out. The main point is that the
unimodular spinors play a fundamental role in the Feynman approach just as they do in
the present approach. The basic statistical problem is how to assign appropriate statistical
weights to alternative world lines.

It remains to be seen whether the statistical notions suggested here can be accommodated
by the Universal Probability Calculus in a natural way. This issue should be set within
the general question of how best to reconcile probability calculus with relativity. The
probability densities ordinarily used in probability calculus are not relativistically invariant,
so they must be replaced by probability currents which are. This generalization from scalar
densities to vectorial currents raises questions about how such quantities as entropy should
be defined in terms of currents.

On the other hand, since a probability current J = J(x) is a timelike vector field, it can
always be written in the form

J = ψγ0ψ̃ , (4.3)

so the spinor field ψ = ψ(x) can be taken as the fundamental descriptor of probabilistic
state. This applies to classical as well as quantum statistical mechanics. The bilinearity
of (4.3) is a consequence of spacetime geometry alone. However, it raises a question about
how to compute statistical averages. In accordance with the superposition principle, or
at least with the linearity of the Dirac equation, quantum mechanics constructs composite
states by averaging over spinor wave functions, whereas classical statistical mechanics takes
averages over vector and tensor quantities. What general principle of probability theory
will tell us which kind of average to consider?

Let me suggest that the answer is to be found in the way that physical information about
pure states is specified. In The Dirac Theory the relation among pure state observables is
specified by the Dirac equation. Therefore, in constructing a composite state to express our
uncertainty as to which pure state describes a given electron, we should require that the
form of the Dirac equation be preserved. Considering the linearity of the Dirac equation,
there is evidently no alternative to the linear superposition (4.1). This makes the superpo-
sition principle of quantum mechanics seem much less fundamental, and it directs us to a
study of the pure state Dirac equation to understand the underlying dynamics of quantum
mechanics.

Unimodular Solutions of the Dirac Equation

In this section we study general properties of unimodular (pure state) solutions of the Dirac
equation. In particular, we seek to determine the equations of motion for a particle with
spin moving along a bicharacteristic of the wave function.
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As noted before, the unimodular condition ψψ̃ = 1 implies that

∂µψ = 1
2Ωµψ , (5.1)

where the Ωµ are bivectors. Consequently the rate of change of along a bicharacteristic is
given by

ψ̇ = v · ψ = 1
2Ωψ , (5.2)

where Ω = vµΩµ. The equations of motion (2.13) for a comoving frame {eµ = ψγµψ̃} on
a bicharacteristic x = x(τ) are determined by expressing Ω as a function of x(τ). To that
end, we note that Ω can be obtained from the identity (derived in [8])

Ω = 2ψ̇ψ̃ = ( ψ)ψ̃v + v( ψ)ψ̃ − v . (5.3)

Now, using (3.6) and (3.10), the Dirac equation (3.2) can be put in the form

ψih̄ψ = 2( ψ)ψ̃S = mv − eA . (5.4)

Using this in (5.3) we obtain

Ω = − v + (m − ev · A)S−1 . (5.5)

Since v = ∧ v + · v, the scalar part of (5.5) gives the Dirac current conservation
equation

· v = 0 . (5.6)

Thus (5.5) reduces the problem of evaluating Ω to evaluating ∧ v.
We can express the Dirac equation as a constitutive relation among observables by using

(3.18) and
p = P + eA (5.7)

to put the Dirac equation (5.4) in the form

p − iq + S = mv . (5.8)

Separately equating vector and trivector parts, we obtain

p = mv − · S , (5.9)

and
iq = ∧ S. (5.10)

We can regard (5.9) as a constitutive equation for the momentum p in terms of the velocity
and spin.

Further properties of observables can be derived by diffentiating the Dirac relation (5.8)
to get

p + i q + 2S = m v . (5.11)

Separating this into scalar, pseudoscalar and bivector parts and using (5.6), (5.7) we obtain

· p = · P + e · A = m · v = 0 , (5.12)

12



· q = 0 , (5.13)

m ∧ v = 2S − eF + ( ∧ P + i ∧ q) . (5.14)

This last equation shows explicity how ∧ v depends on the E.M. field F = ∧ A, but
we still need to evaluate the terms in parenthesis. That can be done as follows.

By (5.1), the “integrability condition”

∂ν∂µψ = ∂µ∂νψ

can be cast in the form
∂νΩµ − ∂µΩν = Ων × Ωµ . (5.15)

And by (3.18) it can be cast in the alternative form

∂νPµ − ∂µPν + i(∂νqµ − ∂µqν) = (∂µS × ∂νS)S−1 . (5.16)

Whence
∧ P = (∂µS × ∂νS) · S−1(γµ ∧ γν) , (5.17)

i ∧ q = (∂µS × ∂νS) ∧ S−1(γµ ∧ γν) . (5.18)

This enables the far right part of (5.14) to be expressed solely in terms of the spin S and
its derivatives. To make further simplifications we need to know something specific about
the spin derivatives ∂µS. That’s next.

Classical Solutions of the Dirac Equation

Now we look for a special class of pure state solutions to the Dirac equation by requiring
that variations in the spin S = S(x) be due solely to motion along the bicharacteristics.
This can be expressed mathematically by the requirement

∂µS = vµ v · S = vµṠ . (6.1)

Let us call this the decoupling condition, because it implies that neighboring bicharacter-
istics are not coupled by an exchange of spin angular momentum. It follows that

S = vṠ , (6.2)

2S = v
..
S . (6.3)

Furthermore, from (5.17) and (5.18)

∧ P = 0 , (6.4)

∧ q = 0 . (6.5)

It must be understood that these are local conditions which may be violated at singular
points; otherwise (6.4) is inconsistent with the quantization condition (3.23) because of
Stokes’ Law ∫

d2x · ( ∧ P ) =
∮

dx · P , (6.6)
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where d2x is a bivector-valued directed area element.
Substituting (6.3) to (6.5) into (5.14) we get

m ∧ v =
..
S − eF , (6.7)

so (5.5) yields the desired result

mΩ = eF −
..
S + m(m − eA · v)S−1 . (6.8)

This gives us immediately the bicharacteristic equations of motion for velocity and spin:

mv̇ = (eF −
..
S ) · v , (6.9)

mṠ = (eF −
..
S ) × S . (6.10)

Since (6.9) and (6.10) are well-defined, deterministic equations of motion along any spe-
cific bicharacteristic, they may be regarded as classical equations of motion for a point
particle. Accordingly, let us refer to the corresponding pure state spinor ψ as a classical
solution of the Dirac equation.

To find out more about these classical solutions, we look to the Dirac equation itself.
Applying (6.2) to (5.9) we get the “Wessenhoff relation”

p = mv + Ṡ · v . (6.11)

This shows that the momentum of the particle is not generally collinear with the velocity,
because it includes a contribution from the spin. Nevertheless, (6.11) implies

p · v = m . (6.12)

Using this along with (5.7) we can now put (6.8) in the form

mΩ = eF −
..
S + m(v · P )S−1 . (6.13)

Now ∧ p = 0 implies p = φ, where φ = φ(x) may be recognized as the phase of the
wave function ψ. Consequently v · P = v · φ = φ̇ is the rate of phase change along a
bicharacteristic. Since

φ̇ = v · P = m − eA · v , (6.14)

we can find the phase change by direct integration after the bicharacteristics have been
found.

Equations (5.13) and (6.5) combine to give

q = 0 , (6.15)

while (6.2) and (5.10) give
iq = v ∧ Ṡ . (6.16)
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It can be shown that equation (6.15) implies that q is constant if and only if (6.15) holds
everywhere without any singularity. It seems likely, therefore, that we can impose the
simplifying condition

q = 0 (6.17a)

without unduly restricting the class of physically significant solutions. So let us consider
its implications. According to (6.16), then, we have

v ∧ Ṡ = 0 . (6.17b)

Adding this to (6.11), we obtain
p = mv + Ṡv . (6.18)

Multiplying by v and taking the bivector part, we obtain

Ṡ = p ∧ v . (6.19)

Equations of motion for the spin and velocity of the form (6.19) and (6.9) have been derived
by Wessenhoff [9] and Corben [10] as a classical model of a particle with spin analogous to
the Dirac electron. Here we have ascertained for the first time the conditions under which
these equations may be exact consequences of the Dirac theory. However, the present
theory differs from their model in some important respects. First, the mass m, which is
rigorously constant in (6.9) and (6.18), is allowed to be variable in the Wessenhoff-Corben
equations. Second, we have here the additional feature of a wave function with variable
phase determined by the last term on the right side of (6.8).

The momentum p = P − eA is most easily related to the rotational velocity by (3.18),
which gives us

∂µψ ih̄ψ̃ = ΩµS = Pµ + vµṠ , (6.20)

whence
ΩµS = P · v + Ṡ . (6.21)

For later use, it should be noted that the geometric product of two bivectors Ω and S
can be decomposed into scalar, bivector and pseudoscalar parts by means of the identity
ΩS = Ω · S + Ω × S + Ω ∧ S. On using (6.18) to eliminate Ṡ (6.21) yields

ΩS = pv + eA · v , (6.22)

an algebraic relation among all the basic observables which is readily solved for any one of
them in terms of the others. Alternatively, elimination of Ω from (6.21) by (6.13) yields

mṠ = (eF −
..
S )S . (6.23)

The bivector part of this has already been found in (6.10). However, the scalar and pseu-
doscalar parts yield the relations

..
S · S = eF · S = −Ṡ2 , (6.24)

..
S ∧ S = eF ∧ S . (6.25)
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The last equality in (6.24) follows from the fact that S2 is constant so S · Ṡ = 0. The
pseudoscalar part of (6.21) gives

Ω ∧ S = 0 . (6.26)

This is a consequence of the condition q = 0, though it also follows from the weaker
condition q · v = 0, which is already entailed by (6.16). To understand its significance,
consider the identity

v · (Ω ∧ S) = (v · Ω) ∧ S + Ω ∧ (v · S) .

Since v · S = 0, this shows that (6.26) implies

v̇ ∧ S = 0 . (6.27)

This means that v̇ lies in the S-plane. Combining (6.27) with (6.17b) we find that

v · (v ∧ S) = 0 . (6.28)

Thus, the condition q = 0 implies that the trivector S∧v = Sv = is is a constant of motion
along the bicharacteristics. Evidently it is too strong a condition for motion in arbitrary
E.M. fields, but it may hold in special cases. It can be shown that (6.25) is a consequence
of this condition.

To find an equation of motion for the momentum we differentiate (6.11) and use (6.9) to
get

ṗ = eF · v + Ṡ · v̇ . (6.29)

The last term here is an unusual one in dynamics, but note that

v · ṗ = v · Ṡ · v̇ = Ṡ · (v̇ ∧ v) . (6.30)

Moreover, from the condition (6.17b) we get

v · (v ∧ Ṡ) = Ṡ − v ∧ (v · Ṡ) = 0 , (6.31)

whence
v̇ · Ṡ = (v · S · v̇)v . (6.32)

So (6.29) becomes
ṗ = eF · v + (ṗ · v)v . (6.33)

The absence of the last term in (6.33) is responsible for the variable mass in the Wessenhoff-
Corben model.

Finally, to justify the interpretation of S as intrinsic angular momentum, we define the
total angular momentum

M = x ∧ p + S , (6.34)

where x ∧ p is the orbital angular momentum. Differentiating with v · and using (6.19)
we obtain the equation for angular momentum conservation

Ṁ = x ∧ ṗ , (6.35)
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the right side being the generalized torque.

The Zitterbewegung

Now we can throw new light on the most basic “classical solution” of the Dirac equation,
the free particle. In the absence of an external E.M. field, we have immediately from (6.33)
and (6.35) that the momentum p and the total angular momentum M = x ∧ p + S are
constants of motion. From (6.22) combined with (6.18) we have

ΩS = pv = m + Ṡ . (7.1)

Its scalar part
Ω · S = p · v = m (7.2)

integrates immediately to
p · x = mτ . (7.3)

This defines a proper time τ = τ(x) on the bicharacteristic passing through any given
location x.

Multiplying (7.1) by its reverse, we obtain

p2 = m2 − Ṡ2 = Ω2S2 = − h̄2

4
Ω2 . (7.4)

This determines |Ω | = 2| p |h̄−1 and incidentially shows that Ṡ2 is constant. Solving (7.1)
for Ω we obtain

Ω = pvS−1 = p(v ∧ S)S−2 . (7.5)

According to (6.28), v∧S is a constant of the motion, so Ω is constant as well. Consequently
the spinor equation

ψ̇ = 1
2Ωψ (7.6)

integrates immediately to
ψ = e

1
2ΩτR0 = e

1
2 m−1Ωp·x R0 , (7.7)

where R0 is a constant unimodular spinor. Specifically, ψ = R0 on the spacelike hyperplane
mτ = p · x = 0. The velocity and spin are thus given by

v = e
1
2Ωτv0e

− 1
2Ωτ , (7.8)

S = e
1
2ΩτS0e

− 1
2Ωτ , (7.9)

where v0 = R0γ0R̃0 and S0 = 1
2R0ih̄R̃0. It should be mentioned that (7.7) is not neces-

sarily a full solution of the Dirac equation, but only the result of integrating (7.6) along
bicharacteristics.

The bicharacteristics can be found by integrating (7.8), but a better way is to combine
(7.3) with the total angular momentum as follows

x ∧ p + x · p = xp = M − S + mτ .
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Multiplication by p−1 = p/p2 gives

x = (M − S)p−1 + mτp−1 , (7.10)

which becomes an explicit function x = x(τ) when (7.9) is inserted. To show the character
of the solution more explicitly, note that (7.1) yields p−1Ω = vS−1, so v · S = 0 implies

p · Ω = 0, or pΩ = Ωp . (7.11)

Consequently,

p · S = e
1
2Ωτp · S0 e−

1
2Ωτ

= [(p · S0) ∧ Ω + eΩτ (p · S0) · Ω]Ω−1 . (7.12)

Noting that M = x0p + S0 on the hyperplane x0 · p = 0 and defining

r0 = [(p−1 · S0) · Ω]Ω−1 , (7.13)

we can put (7.10) in the form

x = x0 − r0 + eΩτr0 + mτp−1 . (7.14)

This is the parametric equation x = x(τ) for a timelike helix with axis x0 − r0 + mτp−1

and squared radius | r0 |2 = −r2
0. This is the same type of helical orbit found by Wessenhoff

and Corben.
This peculiar helical motion, unsupported by an external E.M. field, can be identified

with the zitterbewegung originally attributed to the electron by Schrödinger [6]. Its physical
significance is problematic. The radius of the zitterbewegung vanishes when ΩS = Ω·S = m,
so

Ω = mS−1 =
−2m

h̄
R0iR̃0 . (7.15)

In that case (7.7) becomes
ψ = R0e

−ip·x/h̄ , (7.16)

which will be recognized as the usual free particle solution to the Dirac equation. It has
been suggested [6] that the phase factor in (7.16) also describes a helical zitterbewegung
and that the Dirac theory should be modified to show it. If that is correct, then the
zitterbewegung must be the source of the electron’s magnetic moment and other feature of
quantum theory [6]. The zitterbewegung must then be truly fundamental. That remains
to be seen!

Conclusions

Reformulation of the Dirac Theory in terms of Spacetime Algebra reveals a hidden geometric
structure and opens up a possibility for separating objective and subjective components of
quantum mechanics. More specifically, we have noted the following:
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(1) The Dirac wave function ψ has a Lorentz invariant decomposition

ψ = R(ρeiβ)
1
2

where R is a unimodular spinor which completely characterizes the kinematics of
electron motion.

(2) The Dirac current J is given by

J = ψγ0ψ̃ = ρRγ0R̃ .

In fact, any timelike vector field J = J(x) can be expressed in terms of a spinor field
ψ = ψ(x) in exactly this way. Therefore, the bilinear dependance of the probability
density on the wave function is not a special feature of quantum mechanics. Rather,
it is a consequence of spacetime geometry (as represented by the spacetime algebra).
This decomposition into spinors could be applied as well to probability currents in
classical relativistic statistical mechanics.

(3) The electron spin angular momentum S is given by

S = 1
2R ih̄R̃ .

This reveals that the unit imaginary i in the quantum mechanics of electrons (at
least!) is a bivector quantity. The ubiquitous factor 1

2 ih̄ represents the spin in a
standard orientation, and the spinor field R = R(x) rotates it into the local spin
direction at each spacetime location. That is why i and h̄ always appear together in
the fundamental equations of the Dirac theory (and, perhaps, of quantum mechanics
in general). This supports and expands Dirac’s insight that the most fundamental
aspect of quantum mechanics is the role of i =

√
−1 [11].

(4) The electron energy-momentum vector p = p(x) is given by:

(p − eA) · γµ = Ωµ · S = 2[(∂µR)R̃ ] · S ,

where A = A(x) is the external E.M. potential. Thus, it has a purely kinematic
interpretation.

(5) The bicharacteristics of the Dirac wave function (tangent to the Dirac current) are
interpreted as predicted electron world lines. This is not a new idea. Bohm and Hiley,
among others, have argued forcefully that the identification of bicharacteristics of
the Schrödinger wave function with possible electron paths leads to sensible particle
interpretations of electron interference and tunneling as well as other aspects of
Schrödinger electron theory [12].

(6) It is suggested that unimodular (pure state) solutions of the Dirac equation have
a purely objective physical interpretation, while the factor (ρeiβ)

1
2 has a subjective

probabilistic interpretation, and it arises from pure states by superposition.
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(7) It is suggested that the superposition principle is simply a consequence of requiring
that the form of the Dirac equation be preserved in the construction of statistical
composites of pure states.

(8) Pure states exhibit circular zitterbewegung which may be the origin of the electron
spin and magnetic moment, but the Dirac theory must be modified if that interpre-
tation is to be upheld [6].
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