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Abstract. We present a complete formulation of the 2D and 3D crystallographic space groups in the
conformal geometric algebra of Euclidean space. This enables a simple new representation of translational
and orthogonal symmetries in a multiplicative group of versors. The generators of each group are constructed
directly from a basis of lattice vectors that define its crystal class. A new system of space group symbols
enables one to unambiguously write down all generators of a given space group directly from its symbol.

1. Introduction
Symmetry groups are powerful tools for describing structure in physical systems. For
a given system, a symmetry is defined mathematically as an invertible mapping of the
system onto itself that leaves some property invariant. This article is concerned with the
symmetries of molecular configurations, for which the invariants are Euclidean distances
between constituent atoms. For molecules of finite extension, the symmetry groups are
composed of reflections and rotations with a common fixed point, so they are called point
groups. Large molecules extended to an infinite periodic lattice have translation symmetries
as well. The symmetry groups of such ideal crystals are called (crystallographic) space
groups. It happens that point symmetries combine with translations in subtle ways to
form exactly 17 different 2D space groups and 230 different 3D space groups. This article
introduces a new algebraic representation for the space groups, including, for the first time,
a complete presentation of the generators for each group in a single table. By “presentation”
we mean an explicit representation of group elements. We also introduce a compact new
system of space group symbols that enables one to write down the generators for each group
directly from the group symbol.

Standard treatments of the space groups are based on the usual representation of points
in Euclidean 3-space E3 by vectors in a real vector space R3. They begin with the
general theorem that every displacement or symmetry S of a rigid body can be given
the mathematical form

S : x −→ x′ = Rx + a, (1)

where x and x′ designate points, R is an orthogonal transformation with the origin as
a fixed point, and the vector a designates a translation. Orthogonal transformations are
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represented by matrices and composed multiplicatively while translations are composed
additively. This representation has a number of drawbacks: it is inhomogeneous in the
sense that it singles out the origin for special treatment, it intertwines the representation
of points and symmetries, and it obscures the relation of translations to point symmetries.

It has been demonstrated recently that all these drawbacks can be eliminated in
Geometric Algebra (GA) by replacing the standard vector space model of E 3 with a
homogeneous conformal model [1]. The new insights led immediately to a new representation
for the space groups within “conformal” GA [2]. The present article reviews and completes
that work. Although essential features of GA are summarized herein, more extensive
background in GA will be helpful to the reader. See [3] for a quick introduction or [4] for
a comprehensive treatment. For further analysis of reflection groups that is easily related
to the present approach see [5, 6, 7]. As developed here, the space groups are discrete
subgroups of the Euclidean conformal group. For treatment of the full conformal group
with conformal GA see [8]. Conformal GA has a wide range of applications to physics,
engineering and computer science under active investigation. [9, 10]

2. Geometric Algebra
Here we summarize basic features and results of GA needed to characterize the space groups.
Supporting proofs and calculations are given in the references.

We begin with the usual notion of a real vector space R(r,s) of dimension r+s, including
vector addition, scalar multiplication, and a scalar-valued inner product with signature
(r, s). By introducing the geometric product of vectors we generate the geometric algebra
R(r,s) = G(R(r,s)). Thus there are many kinds of GA distinguished by dimension and
signature. Two signatures are of special interest for modeling the physical space groups:
Euclidean signature (r, 0) and Lorentz signature (r, 1). The latter is familiar for modeling
spacetime in the Theory of Relativity, so its use for modeling space groups may come as an
amusing if not enlightening surprise. The common features of both cases are elucidated in
the general treatment for arbitrary signature in this section.

As in any algebra, the geometric product ab is associative and distributive. However, it
is not commutative, and it is related to the usual scalar-valued inner product a · b by

a · b =
1

2
(ab + ba). (2)

It follows that a2 = a ·a is scalar-valued, so this defines a scalar magnitude |a| for the vector
a. There are three cases: the signature of a is said to be positive if a2 = |a|2, negative if
a2 = −|a|2, or null if a2 = |a|2 = 0.

Taking the geometric product as fundamental, we can regard (2) as a definition of the
inner product. Similarly, we can define an outer product by

a ∧ b =
1

2
(ab − ba). (3)

The two definitions combine to give us the fundamental equation

ab = a · b + a ∧ b. (4)

Unlike inner and outer products alone, for non-null vectors the geometric product admits a
multiplicative inverse given by

a−1 =
1

a2
a = ± a

|a|2 , (5)
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where the sign is the vector’s signature.
Generic elements in GA are called multivectors. By multiplying vectors a1, a2, . . . , ak we

generate a multivector
A = a1a2 · · · ak. (6)

This multivector is said to have even or odd parity given by the sign of (−1)k. By reversing
the order of multiplication we get a different multivector

A† = ak · · · a2a1. (7)

This operation, called reversion, is analogous to hermitian conjugation in matrix algebra.
We use it to define a magnitude |A| by

|A|2 = |a1|2|a2|2 · · · |ak|2 = ±AA†, (8)

where the sign is determined by the signature of the vectors.
We can generalize the definition of outer product (3) by antisymmetrizing the product

of k vectors and denoting the result by

〈A〉k = a1 ∧ a2 ∧ · · · ∧ ak. (9)

This quantity is called a k-vector, and the notation on the left expresses it as the k-vector
part of multivector A. As the notation indicates the outer product is associative, and by
definition it is antisymmetric under interchange of any two vectors. It follows that the outer
product vanishes if and only if the k vectors are linearly dependent, so the outer product is
ideal for expressing linear independence.

If none of the vectors in (6) is null, the multivector A is called a versor, and it has a
multiplicative inverse

A−1 = a−1
k · · · a−1

2 a−1
1 = ± A†

|A|2 , (10)

where the sign depends on signature. It follows that any given set of versors generates a
multiplicative group, where the group product of versors A and B is simply the geometric
product producing a new versor

C = AB. (11)

Moreover, the versors with even parity form a subgroup.
Now we are equipped to formulate the fundamental theorem from which all our results

flow. We think it is one of the most important theorems in all of mathematics, as central
to linear algebra as the Pythagorean theorem is to elementary geometry. It is little known
and used outside GA, because it takes GA to reveal its simplicity and power. It does not
even have a standard name; let us call it the Versor Theorem to emphasize the fundamental
role of versors.

Recall that an orthogonal transformation on the vector space R(r,s) is defined as a linear
transformation that leaves the inner product invariant. Accordingly, we state the Versor
Theorem: Every orthogonal transformation A can be expressed in the canonical form

A : x −→ x′ = A(x) = ±A−1xA = ±A†xA

|A|2 , (12)
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Fig. 1. Reflection of vector x through the plane with normal vector a.

where A is a versor and the sign is its parity. In other words, every versor A determines a
unique orthogonal operator A given by (12). Conversely, it is obvious that A determines A

up to an arbitrary sign and scale factor. Hence, the unit versor Â = A|A|−1 is a double-
valued representation of A. Though magnitude is irrelevant to versor representation of
orthogonal transformations, it is often convenient to work with unnormalized versors, as we
shall see, when representing space groups.

The orthogonal transformations on R(r,s) compose the orthogonal group O(r,s), where
the group product is defined by the composition of linear operators. From (12) we see that
composition of operators A and B gives us the new operator

C(x) = BA(x) = ±B−1(A−1xA)B = ±(AB)−1x(AB) = ±C−1xC, (13)

where versor C is given by the geometric product C = AB. Factoring out the irrelevant
scale factors, we have proved that the unit versors in R(r,s) compose a double-valued group
represention of O(r,s). This group of unit versors is called the Pin group Pin(r,s) in the
mathematics literature. It has the enormous advantage of reducing group composition to
simple multiplication of versors. Versor representations are much simpler than the usual
matrix group representations, as is obvious in the applications below.

Even versors, that is, versors with even parity form an even subgroup of Pin(r,s) called
Spin(r,s). This spin group is a double-valued representation of the special orthogonal group
SO(r,s), sometimes called the rotation group for R(r,s). In Section 4 we will see how all the
3D space groups can be represented as discrete versor subgroups of Pin(3+1,1).

The simplest kind of versor is a single vector, and the linear transformation that it
generates is called a reflection. The reflection generated by vector a has the form

a (x) = −a−1xa = x⊥ − x‖, (14)

where x‖ = x · aa−1 is the component of x along a and x⊥ = x ∧ aa−1 is the component of
x orthogonal to a, as illustrated in Fig. 1.

Every vector a is normal to a hyperplane through the origin determined by the equation
x · a = 0, a straightforward generalization of the familiar equation for a plane in 3D. For
this reason, the reflection (14) is more precisely described as reflection in a hyperplane with
normal a. Indeed, we can regard every vector a by itself as the versor representation of a
reflection without further reference to the hyperplane it determines. Successive reflections

4



are then represented by simply multiplying vectors. From our discussion above, it is obvious
that every orthogonal transformation can be generated and represented in this way. Next
we turn to practical applications of this result.

3. Point Groups with the Vector Space Model of E 3

With the apparatus of GA well in hand, we now return to the vector space model of E 3,
which represents Euclidean points by vectors in R3 = R(3,0). We signify those vectors
with boldface letters to distinguish them from the alternative representation by vectors
in the conformal model introduced in the next section. As explained elsewhere [3], the
geometric algebra R3 = R(3,0) is isomorphic to the familiar Pauli algebra used in quantum
mechanics, although its representation by matrices is irrelevant to physical applications, as
demonstrated once again in the following.

As we learned in the preceding section, the algebra R3 enables us to write the orthogonal
transformation in (1) in the form

Rx = ±R−1xR, (15)

where versor R is an element of Pin(3) = Pin(3,0). If R is even, it belongs to Spin(3) =
Spin(3,0), which is equivalent to the usual spin group in nonrelativistic quantum mechanics.
We are interested here only in discrete subgroups that represent symmetries of molecular
point groups. Since that subject has been thoroughly covered in [2], we simply state the
results we need.

As each point group is uniquely determined by a set of generating versors, we can restrict
our attention to the corresponding versor group, which we refer to as a versor point group.
In 3D every such group can be constructed from a set of three distinct vectors, say a, b,
c. As described by (15), each vector generates a reflection in a plane, often called a mirror
reflection in the crystallographic literature.

The product ab of two vectors generates a rotation

Rx = (ab)−1x(ab) (16)

through twice the angle between a and b, as shown in Fig. 2. Therefore, the versor (ab)p

generates a rotation through p times that angle. This versor generates a finite rotation

x
x'

x

x

x'

b

θ

θa 1

2

Fig. 2. Rotation of vector x through the angle θ about an axis perpendicular to vectors a and b.
Note that the rotation is through twice the angle between a and b.
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Crystal System Point Group

International Geometric

Oblique 1 1̄

2 2̄

Rectangular m 1

mm 2

Trigonal 3m 3

3 3̄

Square 4m 4

4 4̄

Hexagonal 6m 6

6 6̄

Table 1. The 10 two-dimensional point groups and the crystal systems to which they belong. Both
the international and geometric symbols are given for comparison.

group if there is a smallest integer p for which

(ab)p = −|a|p|b|p .
= −1, (17)

where
.
= means equality modulo a scale factor, which is equivalent to normalizing the versors

to unity. This constraint tells us that the angle between a and b is 180◦
p . Obviously, the

versor group is extended to include reflections simply by adopting the vectors a and b as
generators.

The possible values of integer p are limited by requiring that the generators are lattice
vectors. This determines the 10 possible 2D point groups listed in Table 1, where the
value of p serves as a geometric symbol for the point group generated by reflections and the
overbar symbol p̄ designates its rotation subgroup. The symbol p = 1 designates the case
when there is only one vector generator.

The 3D point groups are determined by the following constraints on the generating
vectors (see [2] for a complete justification):

(ab)p .
= (bc)q .

= (ca)2
.
= −1. (18)

One of the rotation angles is restricted to 90◦ because the three rotation generators are
related by

(ab)(bc) = |b|2ac .
= ac. (19)

Consequently, each point group is determined by values for the two integers p and q and
can be designated by the geometric symbol pq with overbars indicating any restrictions
to rotation subgroups. The 32 distinct possibilities are listed in Table 2 along with the
international symbols for the crystallographic point groups. A summary of how to read off
the point group generators from the geometric symbol is given in Table 3.

{A reviewer pointed out that the group notation in Tables 1 and 2 is isomorphic to
Coxeter’s notation in Table 2 of [7], with the correspondences q ↔ [q], q̄ ↔ [q]+, pq ↔
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Crystal Point Group

System International Geometric

Crystal Point Group 3 3̄

System International Geometric 3̄ 62

Triclinic 1 1̄ Trigonal 32 3̄2̄

1̄ 22 3m 3

2 2̄ 3̄m 62̄

Monoclinic m 1 6 6̄

2/m 2̄2 6̄ 3̄2

222 2̄2̄ 6/m 6̄2

Orthorhombic mm2 2 Hexagonal 622 6̄2̄

mmm 22 6mm 6

4 4̄ 6̄m2 32

4̄ 42 6/mmm 62

4/m 4̄2 23 3̄3̄

Tetragonal 422 4̄2̄ m3 43̄

4mm 4 Cubic 432 4̄3̄

4̄2m 42̄ 4̄3m 33 = 3̄3

4/mmm 42 m3m 43 = 4̄3

Table 2. The 32 three-dimensional point groups and the crystal systems to which they belong.
Listed are both the international and geometric symbols for the groups.

[p+, q+], p̄q ↔ [p+, q], p̄q̄ ↔ [p, q]+. The notations were created independently. No doubt
their striking similarity is due to building the groups out of reflections, in contrast to other
approaches that start with rotations and add reflections afterwards. Note, however, that
our notation refers to versor generators, whereas, Coxeter’s notation refers to the orthogonal
transformations they generate.}

4. The Euclidean Group in Conformal GA
In the conformal model for Euclidean geometry the points of E 3 are identified with null
vectors in R(4,1) and its geometric algebra R(4,1). Hence each point x satisfies

x2 = 0. (20)

One null vector e is singled out as the point at infinity so that finite Euclidean points lie in
the hyperplane

x · e = −1. (21)

These two constraints define a 3D paraboloid in a 5D vector space. The remarkable fact is
that this surface has a natural Euclidean structure.
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Point Group Symbol Generators

p (=1) a

p (�= 1) a, b

p̄ ab

pq a, b, c

p̄q ab, c

pq̄ a, bc

p̄q̄ ab, bc

pq abc

Table 3. Geometric point group symbols and their generators. The angles between the generating
vectors are related to p and q as described in the text.

The oriented line segment connecting points x and y is represented by the trivector
x ∧ y ∧ e, and its length, equal to the Euclidean distance between the points, is given by

(x ∧ y ∧ e)2 = (x − y)2 = −2x · y. (22)

Thus, Euclidean distance is given directly by the inner product between points, which has
been made possible by the representation of points as null vectors.

The conformal model is most directly related to the vector space model by designating
one point e0 as the origin and representing the other points by

x ≡ x ∧ e0 ∧ e = x ∧ E, (23)

which, with bivector E = e0 ∧ e held fixed, defines a mapping into 3D vectors. Equation
(23) can be inverted to yield

x = xE − 1

2
x2e + e0. (24)

It follows that (x− y)2 = (x − y)2, so the measure of Euclidean distance between points is
the same in both models. That established, we can confidently treat Euclidean geometry
in the conformal model without further reference to the vector model. And we are well
justified in referring to the algebra R(4,1) as conformal GA.

Every vector in conformal GA represents a significant geometric object, though only null
vectors represent Euclidean points. In particular, modulo an arbitrary scale factor, each
vector a orthogonal to the point at infinity represents a unique (oriented) plane in E 3. The
sign of a specifies orientation, which we often ignore. The equation for the a-plane has the
familiar form

x · a = 0. (25)

In the vector space model an equation of this form holds only for planes through the origin.
Remarkably, however, it applies to every plane in the conformal model. To see how that
works, suppose that 2a is the displacement vector between two points p and q defined by
2a = p − q. Then 2e · a = e · p − e · q = 0, as required for a plane. And, according to (22),
2x · a = x · p − x · q = 0 tells us that all points on the plane are equidistant from p and q.
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Thus, we can regard a as the displacement from the plane to the point p or from the point
q to the plane. To emphasize the fact that this displacement is along a line normal to the
plane, we could call it a normal displacement. Actually, as is evident in the next paragraph,
the displacement is not from a plane to a point but to a parallel plane through that point.

Let us refer to a as the normal of the a-plane, but take note that, unlike the usual notion
of “normal,” it specifies the location of the plane as well as its direction and orientation.
Indeed, we can regard a as a complete algebraic representation of the plane, as it determines
all properties of the plane uniquely. We can also regard it as a versor representation of
reflection in the plane, as specified by eqn. (14). The transformation group generated by
all such normal reflections is the Euclidean group E(3). Conversely, every operator in E(3)
has a simple versor representation as a product of normals. The great advantage of this
representation is that both translations and rotations are represented by versor products.

It is well known that every rotation can be expressed as a product of reflections in two
planes intersecting along the rotation axis, and every translation can be expressed as a
product of reflections in two parallel planes separated by half the length of the translation
(see Chaps. 2,3 & 7 of [6]). Conformal GA makes it possible to express these simple
geometric facts as simple geometric products of the plane normals. In the conformal model
the versor representation of a rotation as a product ab is essentially the same as in the
vector space model described in the previous section, except that the reflection planes were
tied to the origin there. The versor representation of translations is a bit different.

If m and n are unit normals for parallel planes, we can define a vector a by ae = 2m∧n
so the translation versor can be put in the form

mn = 1 + m ∧ n = 1 +
1

2
ae ≡ Ta. (26)

A little algebra shows that this versor generates the translation

x′ = T (x) = T−1
a xTa = x + a +

1

2
(x + a)2e, (27)

where the last term is a scaling at infinity insuring that translated points remain null. [11]
That term is eliminated in x′ ∧ e = x∧ e+ a∧ e. “Wedging” this with an arbitrary point e0

chosen for an origin and using (23), we demonstrate equivalence to the usual equation for
a translation in the vector space model

x′ = x + a. (28)

Now compare the translation vector in eqn. (27) with the displacement vector determining
the bisecting plane defined by eqn. (25). They differ only in their components at infinity;
therefore they project to the same 3-space vector a as in eqn. (28), and their depictions
in spatial figures will be the same. Their difference actually has geometric significance,
but that is not relevant to our present concerns. The most important point here is that
the translation versors form a multiplicative group with composition law TaTb = Ta+b and
inverse T−1

a = T−a, so n-fold powers can be expressed by T n
a = Tna. Thus, we see how the

additive group of displacements is mapped into a multiplicative group of versors.
Now we have all the mathematics we need for a conformal treatment of the space groups.

But first, let’s place it in a more general context. The adjective “conformal” comes from
the established term conformal mapping for angle-preserving mappings on Euclidean space.
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a

b

a

c

b a

xi-1 xi xi+1

Fig. 3. Examples of one-, two-, and three-dimensional lattices and their lattice vectors. The
lattice vectors are given by one-half the distance between neighboring sites (shaded), so that in the
one-dimensional lattice we have a = 1

2 (xi+1 − xi−1).

The group of such mappings on the vector space R(r,s) is called the conformal group C(r,s).
It has been known for a long time that this group is isomorphic to the orthogonal group
O(r+1,s+1), but the practical significance of this fact has been recognized only recently
[1]. In the conformal model for E3 the conformal group is equivalent to O(4,1). We are
interested here only in the Euclidean group E(3), which is the subgroup of O(4,1) that leaves
the point at infinity invariant. The versor representation of E(3) does not have a name, but
it is so important that it deserves one, so let’s call it the Euclidean Pin group E-Pin(3). The
versor space groups are all discrete subgroups of this group. Our next task is to construct
them.

5. Space Groups in Conformal GA
Construction of the space groups begins with a few basics facts about crystal lattices that
are established in the many good books on crystallography [13, 14, 15]. In the conformal
model, lattice points are represented by null vectors and lattice vectors relating neighboring
points are depicted in Fig. 3. Since each lattice vector is the normal for a plane through
the lattice point, it is defined algebraically as half the vector difference between nearest
neighbor points on each side of the plane. Therefore the set of all lattice vectors at a lattice
point represents a set of planes intersecting at that point.

The translation symmetries of every 3D lattice are determined by a set of three lattice
vectors a, b, c defining a unit cell. They determine a set of primitive translations generated by
the versors T±a, T±b, T±c, as explained in the preceding section. There is some arbitrariness
in choosing the unit cell for a given lattice. We take advantage of that by choosing lattice
vectors that also generate point symmetries of the lattice. We call these vectors symmetry
vectors, as in suitable combinations they generate all the symmetries of the lattice. From
the three symmetry vectors for each crystal we construct a minimal set of symmetry versors
that generates the entire space group for the crystal. We have already discussed versors
generating reflections, rotations, and translations. These can be combined to get new
symmetry versors that generate glide reflections and screw displacements, as illustrated in
Fig. 4. In this section we present a complete catalog of symmetry versors for all the space
groups.
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1.  Rotation through 90o

about center point

6.  Glide reflection:  translation by (1/2) a1
     followed by reflection along a2

4.  Rotoreflection:  rotation through 90o

     in the plane followed by a reflection

     along a vector normal to the plane

5.  Screw Displacement: translation by

     (1/2) a1 followed by a 180o rotation in 

     the plane perpendicular to a1

2.  Reflection across vertical

line through center

3.  Translation by a1 or a2

a1

a1

a2

a1

a2

Fig. 4. Examples of the six types of symmetry transformations relevant to the crystallographic
groups.

Standard symbols for the space groups [12, 15] do not take advantage of the important
fact that each space group can be constructed from three symmetry vectors. For that reason
we propose new symbols that enable one to write down generating versors for the groups
directly. We have already introduced suitable symbols for the crystallographic point groups
in Table 3. For the space groups we need to extend those symbols to describe how the
point groups combine with translations. We aim to conform to the international symbol
system [12, 15] as closely as possible. Accordingly, we adopt the standard classification of
crystal lattices known as Bravais lattices, along with their subdivision into crystal systems,
as shown in Fig. 5 for 2D lattices and Fig. 6 for 3D lattices. Crystal systems describe point
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b

b

b

a

a

b

a

a

b

a

b

a

Rectangular

Square

Trigonal

Hexagonal

Oblique

Crystal

System
p

h

c

b

a

Fig. 5. The two-dimensional Bravais lattices and the associated symmetry vectors for each of the
five crystal systems. For the trigonal system we have included the nonstandard “h” lattice.

symmetries, and each system is composed of the subgroups of a point group with maximal
symmetry called the holohedral group of the system.

A complete list of symbols and versor generators for the 17 planar space groups and 230
space groups in 3D are given in Tables 4 and 5, except that we have omitted the primitive
translations, because they are obvious, given the lattice type and the definitions of the
symmetry vectors shown in Figs. 5 and 6. Note that we often suppress the distinction
between space group elements and the versors that represent them. The remainder of this
section is devoted to explaining the system of space group symbols and how the generators
for each group can be constructed from them.

Each space group symbol designates a lattice type, point group, and joining constraints.
The symbol for lattice type specifies the Bravais lattice and hence the nonprimitive
translational symmetries in the space group. The point group symbols and their associated
generators have already been explained and listed in Table 3. Most important is the fact that
the point group part of a space group symbol indicates the angles between the symmetry
vectors in the Bravais lattice. Lastly, we define a joining constraint to be the product of a
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Triclinic

Crystal System

Monoclinic

Orthorhombic

Tetragonal

Trigonal/

Hexagonal

Isometric 

(Cubic)

P I

A

C

H

F R

b

a c

a

a

b

b

c

c

a

b

c

a

b

c

a
b

c

ab

c

ab

c

Fig. 6. The three-dimensional Bravais lattices and their symmetry vectors. Although not shown
in the figure, the symmetry vectors for the nonprincipal lattices are the same as in the principal
lattices. For the trigonal/hexagonal system we have introduced two new lattices labeled “H” and
“F.”
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International Geometric Space Group

Notation Notation Generators

Oblique

1 p1 p1̄

2 p2 p2̄ a ∧ b

Rectangular

3 pm p1 a

4 pg pg1 aT
1/2
b

5 cm c1 a

6 pmm p2 a, b

7 pmg pg2 aT
1/2
b , b

8 pgg pg2g aT
1/2
b , bT

1/2
a

9 cmm c2 a, b

Square

10 p4 p4̄ ab

11 p4m p4 a, b

12 p4g pg4 aT
1/2
b−a, b

Trigonal

13 p3 p3̄ ab

14 p3m1 p3 a, b

15 p31m h3 a, b

Hexagonal

16 p6 p6̄ ab

17 p6m p6 a, b

Table 4. The 17 two-dimensional space groups and their generators. Pure translation generators
are omitted but can be obtained from Fig. 5. The 13 symmorphic space groups are listed in bold
font.

point group generator with a subprimitive translation (that is, some fraction of a primitive
translation) to produce a new kind of irreducible generator. Our main task is therefore to
describe the various joining constraints. Space groups without a joining constraint are called
symmorphic. In such groups both the point group and the translation group are independent
subgroups, so all the group elements are generated by direct products of translation and
point group generators. For more details we examine the 2D and 3D space groups separately.

5.1. Planar Space Groups
Unit cells for the five Bravais lattices in 2D are depicted in Fig. 5. The unit cell of a
primitive, or “p,” lattice contains a single lattice point (at the cell vertex). The unit cell of
a centered, or “c,” lattice contains two points. Although the hexagonally centered, or “h,”
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lattice has been largely neglected in the literature, we find that it has a natural place in the
geometric algebra description of the space groups. For further discussion of the h lattice
and its three-dimensional generalization, see Chapter 5 of [12].

There are 13 symmorphic space groups in 2D, identified by bold numbers in Table 4.
Among these, all translations in the primitive lattices are generated by primitive generators,
so only the point group generators are listed in Table 4. The centered lattices for groups c1

and c2 require the subprimitive generator T
1/2
a+b = T(a+b)/2 for translations to the centered

point. Lattices for the groups p3 and h3 are the same, but their unit cells are different. In

the h lattice the versor T
1/3
a+b generates subprimitive translations to two lattice points inside

the cell.
One special feature of some point groups deserves mention. The bivector a ∧ b is the

directed area of a unit cell in the plane. It is also the versor generator of inversion in the
plane, which is better regarded as a rotation by 180◦. Indeed, it satisfies the constraint for
a 2-fold rotation group:

(a ∧ b)2 = −|a ∧ b|2 .
= −1, (29)

which is a subgroup for the oblique space group p2̄, listed as group #2 in Table 4. It is also
a generator in other versor groups when a · b = 0 so that a ∧ b = ab.

It should be noted that composition of a reflection with a primitive translation in
the normal direction displaces the reflection line (or plane) by half a unit cell. This is
demonstrated algebraically by

aTa = T−1
a a = T−1/2

a aT 1/2
a , (30)

where we have used the fact that a anticommutes with e in the translation versor defined in
(26). The last expression in this equation exhibits the translation explicitly. This displaced
reflection versor appears already in the group p1 #3 in Table 4.

The 4 remaining non-symmorphic space groups are constructed by replacing reflections
in symmorphic groups by glide reflections, which are reflections in a mirror line (or plane in
3D) composed with a subprimitive translation parallel to that line (or plane). Algebraically,
a glide generator is constructed by multiplying the reflection normal by a subprimitive
translation versor. In Table 4, the presence of this particular type of “joining constraint” is
indicated by inserting a “g” in the group symbol. As the point group symbol refers to two
reflection generators a, b, we indicate replacement of the reflection generator a by placing
the g before that symbol and replacement of b by placing it after the symbol.

In the group pg1, the glide versor is given by

Gb ≡ aTb/2 = Tb/2a. (31)

The commutativity of reflection and translation in this expression follows from the fact that
a anticommutes with both b and e in (26). It follows that G2

b = a2Tb
.
= Tb, so Gb is a kind

of square root of the primitive translation Tb. This is characteristic of all glide reflections.
The glide generator in the group pg2 is also given by Gb. Depending on how we choose

to arrange the lattice points, we must either (a) displace the remaining reflection generator
to bTb/2 = T−1

b/4bTb/4 (which is the convention in [12]) or (b) place the lattice points at the

intersection of the two reflection planes. In (a) the product of these two group generators
gives us the rotation group element, as explicitly expressed by Gb(bTb/2) = aTb/2bTb/2 = ab,

and in (b) this rotation is displaced by T
1/4
b . To obtain the simplest expressions for the

15



generators, we use the convention that the lattice points be located at the intersection of
the two reflection planes. More will be said about this in the following sections.

In the space group pg2g the joining constraints are essentially the same, except that

reflection b is changed into the glide reflection bT
1/2
a . In the remaining nonsymmorphic

planar group pg4, there is a glide reflection with generator aT
1/2
b−a, because in the square

lattice the direction normal to a is given by b − a.

5.2. Space Groups in 3D
Unit cells for the 14 Bravais lattices in 3D are depicted in Fig. 6 and generated by three
symmetry vectors a, b, c, as we have already explained. For both the trigonal/hexagonal
and cubic systems there are two sets of possible symmetry vectors. The point group part of
the space group symbol, which defines the angles between a, b, and c, determines which set
of symmetry vectors is to be used. The point group rotation generators ab, bc, ca determine
faces of the unit cell conventionally designated by C,A,B, respectively. We can interpret
the face symbols as bivectors representing directed areas such as C ≡ a∧ b and likewise for
the other faces. The directed volume of a unit cell is a trivector I ≡ a ∧ b ∧ c, also called
the cell pseudoscalar. The pseudoscalar is the versor generator of (space) inversion, with
the group property

I2 = −|I|2 .
= −1, (32)

and it is listed as the sole point group generator for the oblique space group P22 in Table
5. It generates inversions in many other groups as well, as we see below.

As depicted in Fig. 6, there are several types of lattices, designated as primitive (P),
body-centered (I), single-face centered (A, B or C), face-centered (F), rhombohedral (R),
and hexagonal (H). Note that in the trigonal/hexagonal system we have included both
a hexagonal and face-centered lattice. As we mentioned in the previous subsection, the
hexagonal lattice is well-established though largely neglected in current discussions of the
space groups. However, it appears naturally in our GA formulation for which several space
groups require that we define symmetry vectors along the edges of an H lattice. Moreover,
we are led to introduce a face-centered lattice in the trigonal/hexagonal system, which is
obtained from a traditional R lattice along with symmetry vectors defined as in the H
lattice. These lattice symbols along with the point group symbols are all we need to define
the 73 symmorphic space groups in 3D (indicated by bold group numbers in Table 5).

Lattices in the Monoclinic System have unit cells with one symmetry vector c orthogonal
to the others. (Note: The International Tables [12] choose b rather than c, which accounts
for some differences in our group symbols.) It follows that the cell pseudoscalar factors
into I = Cc, where C = a ∧ b is the generator of rotations in group #3, P2̄. We can solve
for C

.
= Ic, which expresses the rotation as a product of space inversion and a reflection.

Enlarging the symmetry group to include the reflection c
.
= CI, we get group #10, P2̄2.

In this case any two of the three versors C, I, c can be chosen as generators of the point
symmetries. From these two groups, we get groups #5 and #12 for A-centered lattices
simply by adding the subprimitive T(b+c)/2 to the set of generators.

Construction of the non-symmorphic 3D space groups proceeds by identifying joining
constraints just as we did in the 2D case, except there are many more possibilities.
There are two general classes of constraints joining subprimitive translations to point
symmetries: glide reflections replacing reflections and screw displacements replacing
rotations. Everything we said about glide reflections in 2D carries over to 3D, where the
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b

(a) (b) (c)

Fig. 7. Examples of different types of glide reflections. In each case the reflection is generated by
the vector a and the translational component is along the dashed vector through one-half its length.
(a) An axial b-glide reflection, (b) a diagonal glide, (c) a diamond glide.

glide lines automatically become glide planes. In 3D there are three types of glide: axial
glides, diagonal glides, and diamond glides, as depicted in Fig. 7. To distinguish the different
possibilities, in the group symbol we insert one of the five letters a, b, c; n; d. In an axial
glide the translation is along one of the edges of the Bravais lattice. Although the symmetry
vectors do not always lie on the edge of a Bravais lattice, we can nevertheless choose a unit
cell that associates each symmetry vector with a lattice edge. Accordingly, we label axial
glide reflections by the associated symmetry vector, which yields an a-glide, b-glide, or
c-glide. For instance, in 3D space group #100 the a reflection is replaced by the b-glide

reflection aT
1/2
a−b. The “n” designates a diagonal n-glide in which the translation is along a

diagonal of any of the three cell faces or along the diagonal through the center of the cell.
Finally, a diamond glide occurs only in “F” and “I” lattices, where the glide translation
is half the distance to a lattice point in the middle of a face or the center of the cell.
As in the 2D case, the reflection being replaced by a glide is indicated in the space group
symbol by placing the glide letter adjacent to the symbol associated with the reflection. For
example, in space groups #61, #62, and #63, the reflections being replaced are {a, b, c},
{a, c}, and {b} respectively. Thus, to ascertain the generators for the space group Pn22a

(#62), the first reflection changes into a diagonal glide with translational component T
1/2
b+c;

the second reflection remains unchanged, and the third reflection changes to an a-glide with

translational factor T
1/2
a . Hence, the non-translational generators are aT

1/2
b+c, b, and cT

1/2
a .

Rotations, represented in the space group symbol by numbers with overbars, can be
converted into screw displacements. For a rotation represented by m̄, the possible screw
displacements are m̄1, m̄2, . . . , m̄m−1. Fig. 8 shows the different screw displacements for
each of the allowed rotations. From this figure one can construct the translational and
rotational components of screw displacements. For example, in the space group P4̄12̄12̄
(space group #92), the basic generators are ab and bc. The first rotation is changed into

the screw displacement abT
1/4
c . The second rotation is turned into the screw displacement

bcT
1/2
2a−b, since the direction perpendicular to the bc plane is along 2a− b. Finally, there are

several instances in which the rotation axes for the generators ab and bc do not intersect.
In these cases the rotation generator must also include a translational component. For

instance, space groups #18 and #19 both have the basic generators abT
1/2
c and bcT

1/2
a , but

in space group #19 the two axes do not intersect. In fact, the bc rotation axis is displaced

from the ab axis by the translation T
1/4
b . Therefore, in space group #19 the generators are

abT
1/2
c and T

−1/4
b [bcT

1/2
a ]T

1/4
b . Similarly, in space groups #195 and #198, the generators

are {ab, bc} and {ab, T
−1/4
a+c bcT

1/4
a+c}, respectively.

17



2
1

4
1

6
1

6
2

6
3

6
4

6
5

4
2

4
3

3
1

3
2

Fig. 8. Figures exhibiting the different types of screw displacement symmetries found in the 3D
space groups. This figure is based on Fig. 2 in Chapter 8 of [13].

5.3. Alternate Presentations and Notations for the Space Groups
We are open to improvements in the space group symbols, though we are perfectly
satisfied with the formulation of group structure in Conformal GA. For example, in
group #61, the short Hermann-Maugin symbol Pbca is evidently simpler than our symbol
Pb2c2a. Indeed, the latter uses five symbols to designate only three generators. The
question, though, is whether the rotation structure designated by the 2’s contributes to
unambiguous identification of the group generators and/or the orderly classification of space
groups. In fact, when compared to the full Hermann-Maugin symbol for this space group,
P21/b21/c21/a, the GA symbol is more concise. Another nomenclature for the classification
of the space groups is the Hall notation [16], which enables one to systematically write
down the 4 × 4 Seitz matrices for the symmetry transformations directly from the group
symbol. Comparison of the GA notation with this and other classification schemes will be
an important future endeavor.

Our notation scheme is based on taking the three symmetry vectors and their properties
as primary. Their lengths are lattice constants and the angles between them are determined
by their multiplicative properties. The purpose of the notation, therefore, is to specify
how these vectors combine to create generators for the various groups. We note, though,
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that there are often several alternative sets of generators, so the preferred choice depends
on one’s purposes. For example, in 3D space group #218 the generators we’ve listed

are aT
1/4
2b−a+c, bT

1/4
2b−c−3a, and cT

1/4
2b−c+a. However, there is a simpler set of generators:

{ab, bc, cT
1/4
2b−c+a}. Equivalence of the two sets is shown by

[bc][cT
1/4
2b−c+a][T−a]

.
= bT

1/4
2b−c−3a

[ab][bT
1/4
2b−c−3a][T

1/2
a+c]

.
= aT

1/4
2b−a+c. (33)

We have chosen the former presentation because it conforms to the simple desiderata in
our notational scheme: we construct new space groups by replacing the generators listed in
Table 3 with glide reflections or screw displacements. This raises the question: Is there a
notation scheme that unambiguously designates an optimal set of generators?

There is also much freedom in the choice of lattice points and unit cells. As we mentioned
before, we have chosen lattice points that allow the most straightforward constructions
of space group generators, and this occasionally differs from standard conventions in
[12]. Other choices may be preferred, for example, to locate certain molecular clusters
in a crystal at lattice points. Thus, applications of our GA formulation to practical
problems of crystallography may call for different choices of both lattice points and space
group presentations. However, we are confident that the formalism is flexible enough to
accommodate any necessary changes.

6. Conclusions
Group theory provides a general mathematical framework for describing symmetries in
the structure and properties of a physical system. In specific applications, however, other
mathematical tools are needed to characterize group elements and invariants. This paper has
introduced conformal GA as a new tool to characterize the crystallographic space groups.
In explicating the simple versor representations of the classical space groups, we have
de-emphasized the ambiguity in sign, though we have noted that the sign distinguishes
geometric objects of opposite orientation. That point has not gone unnoticed in the
literature. In particular, Shubnikov noticed that the sign can be used to associate a color
with each reflection, which led to an extension of the space groups to a much larger class
of dichromatic (Shubnikov) space groups [17]. Conformal GA has not yet been applied
to a detailed treatment of the Shubnikov groups, though we expect the task to be fairly
straightforward. Of course, there is much more to crystallography than the space groups,
so there is much more to be done in applying Conformal GA to the subject.

Our treatment of the space groups illustrates the power of Conformal GA as a general
formalism for molecular modeling. The approach is especially promising for modeling
geometry of large biological molecules and dynamical systems with strong coupling between
translational and rotational degrees of freedom [18]. Finally, we submit that Conformal GA
will prove to be an important component of the general program to unify mathematical
physics with geometric algebra and thus provide students with earlier access to advanced
tools and topics in physics [3].
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Internat. Geom. Space Group Internat. Geom. Space Group

Notat. Notat. Generators Notat. Notat. Generators

Triclinic Orthorhombic (cont.)

1 P1 P1̄ 23 I222 I2̄2̄2̄ ab, bc

2 P1̄ P22 a ∧ b ∧ c 24 I212121 I2̄2̄12̄1 ab, bcT
1/2
a

Monoclinic 25 Pmm2 P2 a, b

3 P2 P2̄ a ∧ b 26 Pmc21 P2c a, bT
1/2
c

4 P21 P2̄1 (a ∧ b)T
1/2
c 27 Pcc2 Pc2c aT

1/2
c , bT

1/2
c

5 C2 A2̄ a ∧ b 28 Pma2 P2a a, bT
1/2
a

6 Pm P1 c 29 Pca21 Pc2a aT
1/2
c , bT

1/2
a

7 Pc Pa1 cT
1/2
a 30 Pnc2 Pn2c aT

1/2
b+c, bT

1/2
c

8 Cm A1 c 31 Pmn21 P2n a, bT
1/2
a+c

9 Cc Aa1 cT
1/2
a 32 Pba2 Pb2a aT

1/2
b , bT

1/2
a

10 P2/m P22̄ c, a ∧ b 33 Pna21 Pn2a aT
1/2
b+c, bT

1/2
a

11 P21/m P22̄1 c, (a ∧ b)T
1/2
c 34 Pnn2 Pn2n aT

1/2
b+c, bT

1/2
a+c

12 C2/m A22̄ c, a ∧ b 35 Cmm2 C2 a, b

13 P2/c Pa22̄ cT
1/2
a , a ∧ b 36 Cmc21 C2c a, bT

1/2
c

14 P21/c Pa22̄1 cT
1/2
a , (a ∧ b)T

1/2
c 37 Ccc2 Cc2c aT

1/2
c , bT

1/2
c

15 C2/c Aa22̄ cT
1/2
a , a ∧ b 38 Amm2 A2 a, b

Orthorhombic 39 Aem2 Ab2 aT
1/2
b , b

16 P222 P2̄2̄2̄ ab, bc 40 Ama2 A2a a, bT
1/2
a

17 P2221 P2̄12̄2̄ abT
1/2
c , bc 41 Aea2 Ab2a aT

1/2
b , bT

1/2
a

18 P21212 P2̄12̄12̄ abT
1/2
c , bcT

1/2
a 42 Fmm2 F2 a, b

19 P212121 P2̄12̄12̄1 abT
1/2
c , T

−1/4
b bcT

1/2
a T

1/4
b 43 Fdd2 Fd2d aT

1/4
b+c, bT

1/4
a+c

20 C2221 C2̄12̄2̄ abT
1/2
c , bc 44 Imm2 I2 a, b

21 C222 C2̄2̄2̄ ab, bc 45 Iba2 Ib2a aT
1/2
b , bT

1/2
a

22 F222 F2̄2̄2̄ ab, bc 46 Ima2 I2a a, bT
1/2
a

Table 5. The 230 three-dimensional space groups and their generators. Pure translation generators
have been omitted but can be obtained from Fig. 6. Note that some space groups in the cubic system

have the pure translation symmetry T
1/2
a+c even for P lattices. The 73 symmorphic space groups are

listed in bold font.
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International Geometric Space Group International Geometric Space Group

Notation Notation Generators Notation Notation Generators

Orthorhombic (cont.) Orthorhombic (cont.)

47 Pmmm P22 a, b, c 71 Immm I22 a, b, c

48 Pnnn Pn2n2n aT
1/2
b+c, bT

1/2
a+c, cT

1/2
a+b 72 Ibam Ib2a2 aT

1/2
b , bT

1/2
a , c

49 Pccm Pc2c2 aT
1/2
c , bT

1/2
c , c 73 Ibca Ib2c2a aT

1/2
b , bT

1/2
c , cT

1/2
a

50 Pban Pb2a2n aT
1/2
b , bT

1/2
a , cT

1/2
a+b 74 Imma I22a a, b, cT

1/2
a

51 Pmma P22a a, b, cT
1/2
a Tetragonal

52 Pnna Pn2n2a aT
1/2
b+c, bT

1/2
a+c, cT

1/2
a 75 P4 P4̄ ab

53 Pmna P2n2a a, bT
1/2
a+c, cT

1/2
a 76 P41 P4̄1 abT

1/4
c

54 Pcca Pc2c2a aT
1/2
c , bT

1/2
c , cT

1/2
a 77 P42 P4̄2 abT

1/2
c

55 Pbam Pb2a2 aT
1/2
b , bT

1/2
a , c 78 P43 P4̄3 abT

3/4
c

56 Pccn Pc2c2n aT
1/2
c , bT

1/2
c , cT

1/2
a+b 79 I4 I4̄ ab

57 Pbcm Pb2c2 aT
1/2
b , bT

1/2
c , c 80 I41 I4̄1 abT

1/4
c

58 Pnnm Pn2n2 aT
1/2
b+c, bT

1/2
a+c, c 81 P4̄ P42 bac

59 Pmmn P22n a, b, cT
1/2
a+b 82 I4̄ I42 bac

60 Pbcn Pb2c2n aT
1/2
b , bT

1/2
c , cT

1/2
a+b 83 P4/m P4̄2 ab, c

61 Pbca Pb2c2a aT
1/2
b , bT

1/2
c , cT

1/2
a 84 P42/m P4̄22 abT

1/2
c , c

62 Pnma Pn22a aT
1/2
b+c, b, cT

1/2
a 85 P4/n P4̄n2 ab, cT

1/2
b

63 Cmcm C2c2 a, bT
1/2
c , c 86 P42/n P4̄2n2 abT

1/2
c , cT

1/2
b

64 Cmce C2c2a a, bT
1/2
c , cT

1/2
a 87 I4/m I4̄2 ab, c

65 Cmmm C22 a, b, c 88 I41/a I4̄1a2 abT
1/4
c , cT

1/2
a

66 Cccm Cc2c2 aT
1/2
c , bT

1/2
c , c 89 P422 P4̄2̄2̄ ab, bc

67 Cmme C22a a, b, cT
1/2
a 90 P4212 P4̄2̄12̄ ab, bcT

1/2
2a−b

68 Ccce Cc2c2a aT
1/2
c , bT

1/2
c , cT

1/2
a 91 P4122 P4̄12̄2̄ abT

1/4
c , bc

69 Fmmm F22 a, b, c 92 P41212 P4̄12̄12̄ abT
1/4
c , bcT

1/2
2a−b

70 Fddd Fd2d2d aT
1/4
b+c, bT

1/4
a+c, cT

1/4
a+b 93 P4222 P4̄22̄2̄ abT

1/2
c , bc
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Internat. Geom. Space Group Internat. Geom. Space Group

Notat. Notat. Generators Notat. Notat. Generators

Tetragonal (cont.) Tetragonal (cont.)

94 P42212 P4̄22̄12̄ abT
1/2
c , bcT

1/2
2a−b 118 P4̄n2 Pn42̄ aT

1/2
a−b+c, bc

95 P4322 P4̄32̄2̄ abT
3/4
c , bc 119 I4̄m2 I42̄ a, bc

96 P43212 P4̄32̄12̄ abT
3/4
c , bcT

1/2
2a−b 120 I4̄c2 Ic42̄ aT

1/2
c , bc

97 I422 I4̄2̄2̄ ab, bc 121 I4̄2m I2̄4 ac, b

98 I4122 I4̄12̄2̄ abT
1/4
c , bc 122 I4̄2d I2̄d4 ac, bT

1/4
2a−b+c

99 P4mm P4 a, b 123 P4/mmm P42 a, b, c

100 P4bm Pb4 aT
1/2
a−b, b 124 P4/mcc Pc4c2 aT

1/2
c , bT

1/2
c , c

101 P42cm Pc4 aT
1/2
c , b 125 P4/nbm Pb42n aT

1/2
a−b, b, cT

1/2
b

102 P42nm Pn4 aT
1/2
a−b+c, b 126 P4/nnc Pn4c2n aT

1/2
a−b+c, bT

1/2
c , cT

1/2
b

103 P4cc Pc4c aT
1/2
c , bT

1/2
c 127 P4/mbm Pb42 aT

1/2
a−b, b, c

104 P4nc Pn4c aT
1/2
a−b+c, bT

1/2
c 128 P4/mnc Pn4c2 aT

1/2
a−b+c, bT

1/2
c , c

105 P42mc P4c a, bT
1/2
c 129 P4/nmm P42n a, b, cT

1/2
b

106 P42bc Pb4c aT
1/2
a−b, bT

1/2
c 130 P4/ncc Pc4c2n aT

1/2
c , bT

1/2
c , cT

1/2
b

107 I4mm I4 a, b 131 P42/mmc P4c2 a, bT
1/2
c , c

108 I4cm Ic4 aT
1/2
c , b 132 P42/mcm Pc42 aT

1/2
c , b, c

109 I41md I4d a, bT
1/4
2a−b+c 133 P42/nbc Pb4c2n aT

1/2
a−b, bT

1/2
c , cT

1/2
b

110 I41cd Ic4d aT
1/2
c , bT

1/4
2a−b+c 134 P42/nnm Pn42n aT

1/2
a−b+c, b, cT

1/2
b

111 P4̄2m P2̄4 ac, b 135 P42/mbc Pb4c2 aT
1/2
a−b, bT

1/2
c , c

112 P4̄2c P2̄c4 ac, bT
1/2
c 136 P42/mnm Pn42 aT

1/2
a−b+c, b, c

113 P4̄21m P2̄14 acT
1/2
a−b, b 137 P42/nmc P4c2n a, bT

1/2
c , cT

1/2
b

114 P4̄21c P2̄1c4 acT
1/2
a−b, bT

1/2
c 138 P42/ncm Pc42n aT

1/2
c , b, cT

1/2
b

115 P4̄m2 P42̄ a, bc 139 I4/mmm I42 a, b, c

116 P4̄c2 Pc42̄ aT
1/2
c , bc 140 I4/mcm Ic42 aT

1/2
c , b, c

117 P4̄b2 Pb42̄ aT
1/2
a−b, bc 141 I41/amd I4d2a a, bT

1/4
2a−b+c, cT

1/2
a
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142 I41/acd Ic4d2a aT
1/2
c , bT

1/4
2a−b+c, cT

1/2
a 165 P3̄c1 Pc62̄ aT

1/2
c , bc

Trigonal 166 R3̄m R62̄ a, bc

143 P3 P3̄ ab 167 R3̄c Rc62̄ aT
1/2
c , bc

144 P31 P3̄1 abT
1/3
c Hexagonal

145 P32 P3̄2 abT
2/3
c 168 P6 P6̄ ab

146 R3 R3̄ ab 169 P61 P6̄1 abT
1/6
c

147 P3̄ P62 bac 170 P65 P6̄5 abT
5/6
c

148 R3̄ R62 bac 171 P62 P6̄2 abT
1/3
c

149 P312 P3̄2̄ ab, bc 172 P64 P6̄4 abT
2/3
c

150 P321 H3̄2̄ ab, bc 173 P63 P6̄3 abT
1/2
c

151 P3112 P3̄12̄ abT
1/3
c , bc 174 P6̄ P3̄2 ab, c

152 P3121 H3̄12̄ abT
1/3
c , bc 175 P6/m P6̄2 ab, c

153 P3212 P3̄22̄ abT
2/3
c , bc 176 P63/m P6̄32 abT

1/2
c , c

154 P3221 H3̄22̄ abT
2/3
c , bc 177 P622 P6̄2̄ ab, bc

155 R32 F3̄2̄ ab, bc 178 P6122 P6̄12̄ abT
1/6
c , bc

156 P3m1 P3 a, b 179 P6522 P6̄52̄ abT
5/6
c , bc

157 P31m H3 a, b 180 P6222 P6̄22̄ abT
1/3
c , bc

158 P3c1 Pc3c aT
1/2
c , bT

1/2
c 181 P6422 P6̄42̄ abT

2/3
c , bc

159 P31c Hc3c aT
1/2
c , bT

1/2
c 182 P6322 P6̄32̄ abT

1/2
c , bc

160 R3m R3 a, b 183 P6mm P6 a, b

161 R3c Rc3c aT
1/2
c , bT

1/2
c 184 P6cc Pc6c aT

1/2
c , bT

1/2
c

162 P3̄1m P2̄6 ac, b 185 P63cm Pc6 aT
1/2
c , b

163 P3̄1c P2̄c6 ac, bT
1/2
c 186 P63mc P6c a, bT

1/2
c

164 P3̄m1 P62̄ a, bc 187 P6̄m2 P32 a, b, c
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188 P6̄c2 Pc3c2 aT
1/2
c , bT

1/2
c , c 209 F432 F4̄3̄2̄ ab, bc

189 P6̄2m H32 a, b, c 210 F4132 F4̄13̄2̄ T
−3/4
a−b abT

1/4
a−b+cT

3/4
a−b, bc

190 P6̄2c Hc3c2 aT
1/2
c , bT

1/2
c , c 211 I432 I4̄3̄2̄ ab, bc

191 P6/mmm P62 a, b, c 212 P4332 P4̄33̄2̄ T
−1/4
a−b abT

3/4
a−b+cT

1/4
a−b, bc

192 P6/mcc Pc6c2 aT
1/2
c , bT

1/2
c , c 213 P4132 P4̄13̄2̄ T

−3/4
a−b abT

1/4
a−b+cT

3/4
a−b, bc

193 P63/mcm Pc62 aT
1/2
c , b, c 214 I4132 I4̄13̄2̄ T

−3/4
a−b abT

1/4
a−b+cT

3/4
a−b, bc

194 P63/mmc P6c2 a, bT
1/2
c , c 215 P4̄3m P33 a, b, c

Cubic 216 F4̄3m F33 a, b, c

195 P23 P3̄3̄2̄ ab, bc 217 I4̄3m I33 a, b, c

196 F23 F3̄3̄2̄ ab, bc 218 P4̄3n Pn3n3n aT
1/4
2b−a+c, bT

1/4
2b−c−3a, cT

1/4
2b−c+a

197 I23 I3̄3̄2̄ ab, bc 219 F4̄3c Fc3c3a aT
1/2
c , bT

1/2
c−a, cT

1/2
a

198 P213 P3̄3̄2̄1 ab, T
−1/4
a+c bcT

1/4
a+c 220 I4̄3d Id3d3d aT

1/8
2b−a+c, bT

1/8
2b−c−3a, cT

1/8
2b−c+a

199 I213 I3̄3̄2̄1 ab, T
−1/4
a+c bcT

1/4
a+c 221 Pm3̄m P43 a, b, c

200 Pm3̄ P43̄ a, bc 222 Pn3̄n Pn4n3n aT
1/2
c , bT

1/2
c−a, cT

1/2
3a−2b+c

201 Pn3̄ Pn43̄ aT
1/2
c , bc 223 Pm3̄n P4n3n a, bT

1/2
c−a, cT

1/2
3a−2b+c

202 Fm3̄ F43̄ a, bc 224 Pn3̄m Pn43 aT
1/2
c , b, c

203 Fd3̄ Fd43̄ aT
1/4
c , bc 225 Fm3̄m F43 a, b, c

204 Im3̄ I43̄ a, bc 226 Fm3̄c F4c3a a, bT
1/2
a−b+c, cT

1/2
a

205 Pa3̄ Pb43̄ aT
1/2
a−b, bc 227 Fd3̄m Fd4n3 aT

1/4
c , bT

1/2
c−a, c

206 Ia3̄ Ib43̄ aT
1/2
a−b, bc 228 Fd3̄c Fd4c3a aT

1/4
c , bT

1/2
a−b+c, cT

1/2
a

207 P432 P4̄3̄2̄ ab, bc 229 Im3̄m I43 a, b, c

208 P4232 P4̄23̄2̄ T
−1/2
a abT

1/2
a−b+cT

1/2
a , bc 230 Ia3̄d Ib4d3d aT

1/2
a−b, bT

1/4
c−a, cT

1/4
3a−2b+c
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