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Abstract

The Dirac theory is completely reformulated in terms of Spacetime Algebra, a real Clifford Algebra char-

acterizing the geometrical properties of spacetime. This eliminates redundancy in the conventional matrix

formulation and reveals a hidden geometric structure in the theory. Among other things, it reveals that

complex numbers in the Dirac equation have a kinematical interpretation, with the unit imaginary identi-

fied as the generator of rotations in a spacelike plane representing the direction of electron spin. Thus, spin

and complex numbers are shown to be inextricably related in the Dirac Theory. This leads to a new version

of the zitterbewegung, wherein local circular motion of the electron is directly associated with the phase

factor of the wave function. In consequence, the electron spin and magnetic moment can be attributed to

the zitterbewegung, and many other features of quantum mechanics can be explained as zitterbewegung

resonances.

INTRODUCTION.

This paper reviews and consolidates results from a line of research1–14 aimed at clarifying
the Dirac electron theory and simplifying its mathematical formulation. The central result
is a representation of the Dirac wave function which reveals geometric structure in the
Dirac theory — structure which is not at all apparent in the conventional formulation.
Besides computational benefits, this result has many implications for the interpretation of
quantum mechanics, ranging from the classical limit to possibilities of a substructure in the
Dirac theory. Before we can address these issues, however, an analysis and revision of the
underlying mathematical formalism is needed.

Most physicists regard the Dirac algebra as the algebra of a relativistic spin- 1
2 particle.

However, there is a broader interpretation with far-reaching consequences. Dirac’s gamma
matrices can be regarded as representations of spacetime vectors. These vectors generate a
real Clifford algebra, which has been dubbed the Spacetime Algebra (STA), because it pro-
vides a complete, nonredundant characterization of the metrical and directional properties
of spacetime. All the elements of the STA have straightforward geometric interpretations.
This brings to light a geometric significance of the Dirac algebra which was implicit in
Dirac’s original formulation but only dimly recognized since. Since STA is a universal alge-
bra of spacetime properties, it is more than a special tool for characterizing spin- 1

2 particles.
It is equally applicable to every domain of classical and quantum physics.

Reformulation of the Dirac Theory in terms of STA reveals that the conventional matrix
formulation contains superfluous degrees of freedom in its use of complex numbers. This
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redundancy is eliminated in the STA formulation wherein the base number field is real
rather than complex. Its most immediate and striking consequence is a revelation of the
geometrical role played by complex numbers in the Dirac Theory. It reveals that the unit
imaginary appearing in the Dirac equation and the energy-momentum operators represents
the bivector generator of rotations in a spacelike plane corresponding to the direction of
electron spin. In other words, the factor ih̄ represents spin in the Dirac theory—the i
represents the spin direction while h̄/2 is the magnitude of the spin. It must be emphasized
that this is not an adventitious interpretation of h̄ arbitrarily imposed on the Dirac theory.
It has been implicit in the theory from the beginning. The STA formulation only makes it
explicit.

In as much as complex wave functions clearly play a crucial role in quantum mechan-
ics, the discovery that the ubiquitous factor ih̄ is inextricably associated with spin in the
Dirac theory must surely be a critical clue to a deeper interpretation of quantum mechan-
ics. Its implications are not immediately obvious, however, and they evidently cannot be
understood apart from a thorough analysis of the Dirac theory. The approach reviewed in
this paper is to systematically study the geometric structure of the Dirac equation and its
solutions as revealed by the STA formulation. The geometric structure of the Dirac theory
is taken to be the most reliable guide to its physical interpretation as well as to feasible
modifications and extensions.

The central result is an invariant decomposition of the Dirac wave function into a 2-
parameter statistical factor and a 6-parameter kinematical factor. Among its implications
are the following: The statistical factor characterizes the admixture of electron-positron
states without employing Fourier analysis. The kinematical factor admits a kinematical
interpretation of the complex phase factor and relates it to the spin. The fullest interpre-
tation is achieved by a simple change in identification of the electron velocity which reveals
a zitterbewegung substructure inherent in the Dirac theory. This opens up possibilities for
probing the substructure experimentally. Other possibilities arise from noting that the
invariance group of the Dirac current has the structure of the electroweak gauge group.

In two appendixes the coupled Dirac-Maxwell field equations are derived from a La-
grangian and the associated conservation laws are derived from Poincaré invariance.

This article was originally prepared in 1990 and circulated as a preprint. The whole
approach has been further elaborated along several lines since.37–46 References 45 and 46
are especially noteworthy because they present a number of physical applications, including
tunneling, electron diffraction and Stern-Gerlach splitting, with new insights into each of
them.

1. SPACETIME ALGEBRA AND CALCULUS.

We shall employ a flat space model of the physical spacetime manifold in this article, so
each point event can be represented by a unique element x in a real 4-dimensional vector
space M4. The properties of scalar multiplication and vector addition in M4 provide
only a partial characterization of spacetime geometry. To complete the characterization
we introduce an associative geometric product among vectors with the property that the
square x2 of any vector x is a (real) scalar. As usual, we say that the vector x is timelike,
lightlike or spacelike if x2 > 0, x2 = 0, x2 < 0 respectively.
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The vector spaceM4 is not closed under the geometric product. Rather, by multiplication
and addition it generates a real associative (but noncommutative) algebra of dimension
24 = 16, commonly called the Geometric Algebra (or Clifford Algebra) of M4. We call it
the spacetime algebra (STA), because all its elements and operations represent geometric
elements and relations, and it suffices for the representation of any geometric structure on
spacetime.

To facilitate applications of STA to physics it is necessary to build a system of definitions
and theorems. From the geometric product uv of two vectors it is convenient to define two
other products. The inner product u · v is defined by

u · v = 1
2 (uv + vu) = v · u , (1.1)

while the outer product u ∧ v is defined by

u ∧ v = 1
2 (uv − vu) = v ∧ u . (1.2)

The three products are therefore related by

uv = u · v + u ∧ v , (1.3)

and this can be regarded as a decomposition of the product uv into symmetric and skewsym-
metric parts.

The inner and outer products can be generalized. We define the outer product along with
the notion of k-vector iteratively as follows: Scalars are defined to be 0-vectors, vectors are
1-vectors, and bivectors, such as u∧ v, are 2-vectors. For a given k-vector K, the integer k
is called the step (or grade) of K. For k ≥ 1, the outer product of a vector v with a k-vector
K is a (k + 1)-vector defined in terms of the geometric product by

v ∧K = 1
2 (vK + (−1)kKv) = (−1)kK ∧ v . (1.4)

The corresponding inner product is defined by

v ·K = 1
2 (vK + (−1)k+1Kv) = (−1)k+1K · v , (1.5)

and it can be proved that the result is a (k − 1)-vector. Adding (1.4) and (1.5) we obtain

vK = v ·K + v ∧K , (1.6)

which obviously generalize (1.3). The important thing about (1.6), is that it decomposes
vK into (k − 1)-vector and (k + 1)-vector parts.

By continuing as above, the STA as been developed into a complete coordinate-free
calculus for spacetime physics. However, to hasten comparison with standard Dirac the-
ory, we interrupt that process to introduce coordinates and a basis for the algebra. Let
{γµ; 0, 1, 2, 3} be a right-handed orthonormal frame of vectors with γ0 in the forward light
cone. In accordance with (1.1), the components gµν of the metric tensor for this frame are
given by

gµν = γµ · γν = 1
2 (γµγν + γνγµ) . (1.7)
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The unit pseudoscalar i for spacetime is related to such a frame by the equation

i = γ0γ1γ2γ3 = γ0 ∧ γ1 ∧ γ2 ∧ γ3 . (1.8)

It is readily verified from (1.8) that i2 = −1, and the geometric product of i with any vector
is anticommutative. Hereafter it will be convenient to refer to {γµ} as a standard frame.

For manipulating coordinates it is convenient to introduce the reciprocal frame {γµ}
defined by the equations

γµ = gµνγ
ν or γµ · γν = δνµ . (1.9)

(Summation convention in force!) The relation of scalar coordinates xµ to the spacetime
point x they designate is then given by

xµ = γµ · x and x = xµγµ . (1.10)

By multiplication the γµ generate a complete basis of k-vectors for STA, consisting of the
24 = 16 linearly independent elements

1, γµ, γµ ∧ γν , γµi, i . (1.11)

Any multivector can be expressed as a linear combination of these elements. For example,
a bivector F has the expansion

F = 1
2F

µνγµ ∧ γν , (1.12a)

with its “scalar components” Fµν given by

Fµν = γµ · F · γν = γµ · (γν · F ) = (γµ ∧ γν) · F . (1.12b)

Note that the two inner products in the middle term can be performed in either order, so
a parenthesis is not needed.

The entire spacetime algebra is obtained by taking linear combinations of basis k-vectors
in (1.11) obtained by outer multiplication of vectors in M4. A generic element M of the
STA, called a multivector, can thus be written in the expanded form

M = α+ a+ F + bi+ βi , (1.13)

where α and β are scalars, a and b are vectors, and F is a bivector. This is a decomposition
of M into its k-vector parts, with k = 0, 1, 2, 3, 4, as is expressed more explicitly by putting
it in the form

M =

4∑
k=0

M(k) (1.13′)

where the subscript (k) means “k-vector part.” Of course, M(0) = α, M(1) = a, M(2) = F ,
M(3) = bi, M(4) = βi

Computations are facilitated by the operation of reversion. For M in the expanded form
(1.13) the reverse M̃ can be defined by

M̃ = α+ a− F − bi+ βi . (1.14)
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Note, in particular, the effect of reversion on the various k-vector parts.

α̃ = α, ã = a, F̃ = −F, ĩ = i .

It is not difficult to prove that
(MN)˜ = ÑM̃ , (1.15)

for arbitrary multivectors M and N .
Any multivector M can be decomposed into the sum of an even part M+ and an odd

part M− defined in terms of the expanded form (1.13) by

M+ = α+ F + βi , (1.16a)

M− = a+ bi , (1.16b)

or, equivalently, by
M± = 1

2 (M ∓ iMi) . (1.16c)

The set {M+} of all even multivectors forms an important subalgebra of STA called the
even subalgebra.

We are now in position to describe the relation of STA to the Dirac algebra. The Dirac
matrices are representations of the vectors γµ by 4×4 matrices, and we emphasize this cor-
respondence by denoting the vectors with the same symbols γµ ordinarily used to represent
the Dirac matrices. In view of what we know about STA, this correspondence reveals the
physical significance of the Dirac matrices, appearing so mysteriously in relativistic quan-
tum mechanics: The Dirac matrices are no more and no less than matrix representations of
an orthonormal frame of spacetime vectors and thereby they characterize spacetime geom-
etry. But how can this be? Dirac never said any such thing! And physicists today regard
the set {γµ} as a single vector with matrices for components. Nevertheless, their practice
shows that the “frame interpretation” is the correct one, though we shall see later that
the “component interpretation” is actually equivalent to it in certain circumstances. The
correct interpretation was actually inherent in Dirac’s argument to derive the matrices in
the first place: First he put the γµ in one-to-one correspondence with orthogonal directions
in spacetime by indexing them. Second, he related the γµ to the metric tensor by imposing
the “peculiar condition” (1.7) on the matrices for formal algebraic reasons. But we have
seen that this condition has a clear geometric meaning in STA, a meaning which demands
the “frame interpretation” though it is compatible with the “component interpretation.”
Finally, Dirac introduced associativity automatically by employing matrix algebra, with-
out realizing that it has a geometric meaning. The geometric meaning of associativity in
geometric algebra is discussed at length in Chap. 1 of Ref. 16.

If indeed the physical significance of the Dirac matrices derives entirely from their inter-
pretation as a frame of vectors, then their specific matrix properties must be irrelevant to
physics. We shall prove this by dispensing with matrices altogether and formulating the
Dirac theory entirely in terms of STA. A step in this direction has already been taken in
conventional approaches by proving that physical predictions are invariant under a change
of matrix representation. Though the particular representation is irrelevant, it is required
that γ0 be hermitian while the γk are antihermitian, as expressed by

γ0
† = γ0 , γk

† = −γk . (1.17)
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Though hermitian conjugation is a matrix operation, it has a representation in STA that
gives it a physical meaning. For any multivector M , we define the hermitian conjugate by

M† = γ0M̃γ0 . (1.18)

Clearly, this is not an invariant operation because it depends on the selection of a particular
timelike direction. Its physical significance will be made clear in the next Section.

Finally, we note that the Dirac algebra is the matrix algebra generated by the Dirac
matrices over the base field of the complex numbers. Let i′ =

√
−1 denote the unit imagi-

nary in the base number field. In contrast to the γµ, i
′ does not represent any property of

spacetime. Furthermore, STA already contains a number of “geometrical roots” of minus
one, including

γ2
k = −1, (γ2γ1)

2 = −1, i2 = (γ0γ1γ2γ3) = −1 .

We shall see that these roots can take over the role of i′ in the Dirac theory, thereby
revealing its geometrical meaning. Note that the complex base field gives the Dirac algebra
twice as many degrees of freedom as STA. Evidently these 16 additional degrees of freedom
are devoid of geometrical or physical significance, serving only to obscure the geometric
content of the algebra. For these reasons we stick with STA and eschew the Dirac algebra
until we need it for translating the matrix version of the Dirac theory into STA.

With STA we can describe physical processes by equations which are invariant in the sense
that they are not referred to any inertial system. However, observations and measurements
are usually expressed in terms of variables tied to a particular inertial system, so we need
to know how to reformulate invariant equations in terms of those variables. STA provides
a very simple way to do that called a space-time split.

In STA a given inertial system is completely characterized by a single future-pointing,
timelike unit vector. Refer to the inertial system characterized by the vector γ0 as the γ0-
system. The vector γ0 is tangent to the world line of an observer at rest in the γ0-system,
so it is convenient to use γ0 as a name for the observer. The observer γ0 is represented
algebraically in STA in the same way as any other physical system, and the spacetime split
amounts to no more than comparing the motion of a given system (the observer) to other
physical systems.

An inertial observer γ0 determines a unique mapping of spacetime into the even subalgebra
of STA. For each spacetime point (or event) x the mapping is specified by

xγ0 = t+ x , (1.19a)

where
t = x · γ0 (1.19b)

and
x = x ∧ γ0 . (1.19c)

This defines the γ0-split of spacetime. In “relativistic units” where the speed of light c = 1,
t is the time parameter for the γ0-system. Equation (1.19b) assigns a unique time t to every
event x; indeed, (1.19b) is the equation for a one parameter family of spacelike hyperplanes
with normal γ0.
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The set of all position vectors (1.19c) is the 3-dimensional position space of the observer
γ0, which we designate by P3 = P3(γ0) = {x = x ∧ γ0}. Note that P3 consists of all
bivectors in STA with γ0 as a common factor. In agreement with common parlance, we
refer to the elements of P3 as vectors. Thus, we have two kinds of vectors, those in M4

and those in P3. To distinguish between them, we may refer to elements of M4 as proper
vectors and to elements of P3 as relative vectors (relative to γ0, of course!). Also, relative
vectors will be designated in boldface.

By the geometric product and sum the vectors in P3 generate the entire even subalgebra
of STA as the geometric algebra of P3. This is made obvious by constructing a basis.
Corresponding to a standard basis {γµ} forM4, we have a standard basis {σk; k = 1, 2, 3}
for P3, where

σk = γk ∧ γ0 = γkγ0 . (1.20a)

These generate a basis for the relative bivectors:

σi ∧ σj = σiσj = iσk = γjγi , (1.20b)

where the allowed values of the indices {i, j, k} are cyclic permutations of 1,2,3. The right
sides of (1.20) and (2.5) show how the bivectors for spacetime are split into vectors and
bivectors for P3. Remarkably, the right-handed pseudoscalar for P3 is identical to that for
M4; thus,

σ1σ2σ3 = i = γ0γ1γ2γ3 . (1.20c)

It will be noted that the geometric algebra of P3 is isomorphic to the Pauli algebra,
with the σk corresponding to the 2× 2 Pauli matrices. However, if the γµ are regarded as
Dirac matrices, then (1.20) defines 4× 4 matrix representations of the σk; these are the αk
matrices of Dirac.7 This awkward distinction between 2×2 and 4×4 matrix representations
is another unnecessary complication in the conventional formulation of quantum mechanics.
It is entirely irrelevant to the simple relation between relative and proper basis vectors
defined by (1.20a).

To complete the correspondence with matrix representations, consider hermitian conju-
gation again. According to the definition (1.18), the σk are hermitian, that is,

σ†k = σk and (σiσj)
† = σjσi . (1.21)

But this defines the geometrical operation of reversion in the algebra of P3. Thus, hermitian
conjugation has the geometrical meaning of reversion “in” an inertial system.

Let x = x(τ) be the history of a particle with proper time τ and proper velocity v = dx/dt.
The space-time split of v is obtained by differentiating (1.19a); whence

vγ0 = v0(1 + v) , (1.22a)

where

v0 = v · γ0 =
dt

dτ
=
(
1− v2

)− 1
2 (1.22b)

is the “time dilation” factor, and

v =
dx

dt
=
dτ

dt

dx

dτ
=
v ∧ γ0

v · γ0
(1.22c)
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is the relative velocity in the γ0-system. The last equality in (1.22b) was obtained from

1 = v2 = (vγ0)(γ0v) = v0(1 + v)v0(1− v) = v2
0(1− v2) .

An electromagnetic field is a bivector-valued function F = F (x) on spacetime. An
observer γ0 splits it into an electric (relative vector) part E and, a magnetic (relative
bivector) part iB; thus

F = E + iB , (1.23a)

where
E = (F · γ0)γ0 = 1

2 (F + F †) , (1.23b)

iB = (F ∧ γ0)γ0 = 1
2 (F − F †) , (1.23c)

and, in accordance with (1.18), F † = E− iB. Equation (1.23a) represents the field formally
as a complex (relative) vector; but it must be remembered that the imaginary i here is the
unit pseudoscalar and so has a definite geometric meaning. Indeed, (1.23a) shows that the
magnetic field is actually a bivector quantity iB, and its conventional representation as
a vector B is a historical accident in which the duality is hidden in the notion of “axial
vector.”18,16

At this point it is worth noting that the geometric product of relative vectors E and
B can be decomposed into symmetric and antisymmetric parts in the same way that we
decomposed the product of proper vectors. Thus, we obtain

EB = E ·B = i(E××B) , (1.24a)

where
E ·B = 1

2 (EB + BE) (1.24b)

is the usual dot product for Euclidean 3-space, and

E××B =
1

2i
(EB−BE) = i−1(E ∧B) (1.24c)

is usual cross product of Gibbs. Thus, the standard vector algebra of Gibbs is smoothly
imbedded in STA and simply related to invariant spacetime relations by a spacetime split.
Consequently, translations from STA to vector algebra are effortless. Moreover, the com-
bination (1.24) of the dot and cross products into the single geometric product simplifies
many aspects of classical nonrelativistic physics, as demonstrated at length in Ref. 16.

In terms of spacetime coordinates defined by (1.10), an operator 5 interpreted as the
derivative with respect to a spacetime point x can be defined by

5 = γµ∂µ (1.25)

where

∂µ =
∂

∂xµ
= γµ ·5 . (1.26)

The square of is the d’Alembertian

52
= gµν∂µ∂ν . (1.27)
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The matrix representation of (1.25) will be recognized as the “Dirac Operator,” originally

discovered by Dirac by seeking a “square root” of 52
in order to find a first order relativis-

tically invariant wave equation, the famous “Dirac equation” discussed in the next Section.
However, in STA where the γµ are vectors, it is clear that 5 is a vector operator, because
it is the derivative with respect to a vector representing a spacetime point. Contrary to
the impression given by conventional accounts of relativistic quantum theory, 5 is not an
operator specially adapted to spin-1/2 wave equations. Here we show that it is equally apt
for electromagnetic field equations.

In STA an electromagnetic field is represented by a bivector-valued function F = F (x)
on spacetime. The field produced by a source with spacetime current density J = J(x) is
determined by Maxwell’s Equation

5F = J . (1.28)

Using (1.11) again to write
5F = 5 · F +5∧ F , (1.29)

(1.28) can be separated into a vector part

5 · F = J (1.30a)

and a trivector part
5∧ F = 0 . (1.30b)

Expressed in terms of a basis by using (1.25) and (1.12a), these two equations are seen to
as equivalent to the usual tensor form of Maxwell’s equations.

Sometimes the source current J can be decomposed into a conduction current JC and a
magnetization current 5 ·M , where the generalized magnetization M = M(x) is a bivector
field; thus

J = JC +5 ·M . (1.31)

The Gordon decomposition of the Dirac current is of this ilk. Because of the mathematical
identity 5 · (5 ·M) = (5 ∧5) ·M = 0, the conservation law 5 · J = 0 implies also that
5 · JC = 0. Using (1.31), equation (1.30a) can be put in the form

5 ·G = JC (1.32)

where we have defined a new field

G = F −M . (1.33)

A disadvantage of this approach is that it mixes up physically different kinds of entities, an
E-M field F and a matter field M . However, in most materials M is a function of the field
F , so when a “constitutive equation” M = M(F ) is known (1.32) becomes a well defined
equation for F .

STA enables us to write the usual Maxwell energy-momentum tensor T (n) = T (n(x), x)
for the electromagnetic field in the compact form

T (n) = 1
2FnF̃ = −1

2FnF . (1.34)

9



     

Recall that the tensor field T (n) is a vector-valued linear function on the tangent space
at each spacetime point x describing the flow of energy-momentum through a surface with
normal n = n(x), By linearity T (n) = nµT

µ, where nµ = n · γµ and

Tµ ≡ T (γµ) = 1
2Fγ

µF̃ . (1.35)

The divergence of T (n) can be evaluated by using Maxwell’s equation (1.28), with the result

∂µT
µ = T (5) = J · F . (1.36)

Its value is the negative of the Lorentz Force F · J , which is the rate of energy-momentum
transfer from the source J to the field F .

2. THE REAL DIRAC EQUATION

To find a representation of the Dirac theory in terms of the STA, we begin with a Dirac
spinor Ψ, a column matrix of 4 complex numbers. Let u be a fixed spinor with the properties

u†u = 1 , (2.1a)

γ0u = u , (2.1b)

γ2γ1u = i′u . (2.1c)

In writing this we regard the γµ, for the time being, as 4× 4 Dirac matrices, and i′ as the
unit imaginary in the complex number field of the Dirac algebra. Now, we can write any
Dirac spinor

Ψ = ψu , (2.2)

where Ψ is a matrix which can be expressed as a polynomial in the γµ. The coefficients in
this polynomial can be taken as real, for if there is a term with an imaginary coefficient,
then (2.1c) enables us to make it real without altering (2.2) by replacing i′ in the term by
γ2γ1 on the right of the term. Furthermore, the polynomial can be taken to be an even
multivector, for if any term is odd, then (2.1b) allows us to make it even by multiplying
on the right by γ0. Thus, in (2.2) we may assume that ψ is a real even multivector. Now
we may reinterpret the γµ in ψ as vectors in the STA instead of matrices. Thus, we have
established a correspondence between Dirac spinors and even multivectors in the STA. The
correspondence must be one-to-one, because the space of even multivectors (like the space
of Dirac spinors) is exactly 8-dimensional, with 1 scalar, 1 pseudoscalar and 6 bivector
dimensions.

There are other ways to represent a Dirac spinor in the STA,12 but all representations are,
of course, mathematically equivalent. The representation chosen here has the advantages
of simplicity and, as we shall see, ease of interpretation.

To distinguish a spinor ψ in the STA from its matrix representation Ψ in the Dirac alge-
bra, let us call it a real spinor to emphasize the elimination of the ungeometrical imaginary
i′. Alternatively, we might refer to ψ as the operator representation of a Dirac spinor,
because, as shown below, it plays the role of an operator generating observables in the
theory.
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In terms of the real wave function ψ, the Dirac equation for an electron can be written
in the form

γµ(∂µψγ2γ1h̄− eAµψ) = mψγ0 , (2.3)

where m is the mass and e = −| e | is the charge of the electron, while the Aµ = A · γµ
are components of the electromagnetic vector potential. To prove that this is equivalent to
the standard matrix form of the Dirac equation,21 we simply interpret the γµ as matrices,
multiply by u on the right and use (2.1a, b, c) and (2.2) to get the standard form

γµ(i′h̄∂µ − eAµ)Ψ = mΨ . (2.4)

This completes the proof. Alternative proofs are given elsewhere.4,7 The original converse
derivation of (2.3) from (2.4) was much more difficult.2

Henceforth, we can work with the real Dirac equation (2.3) without reference to its
matrix representation (2.4). We know that computations in STA can be carried out without
introducing a basis, so let us use (1.25) to write the real Dirac equation in the coordinate-
free form

5ψih̄− eAψ = mψγ0 , (2.5)

where A = Aµγ
µ is the electromagnetic vector potential, and the notation

i ≡ γ2γ1 = iγ3γ0 = iσ3 (2.6)

emphasizes that this bivector plays the role of the imaginary i′ that appears explicitly in
the matrix form (2.4) of the Dirac equation. To interpret the theory, it is crucial to note
that the bivector i has a definite geometrical interpretation while i′ does not.

Equation (2.5) is Lorentz invariant, despite the explicit appearance of the constants γ0

and i = γ2γ1 in it. These constants need not be associated with vectors in a particular
reference frame, though it is often convenient to do so. It is only required that γ0 be a fixed,
future-pointing, timelike unit vector while i is a spacelike unit bivector which commutes
with γ0. The constants can be changed by a Lorentz rotation

γµ → γ′µ = UγµŨ , (2.7)

where U is a constant rotor, so UŨ = 1,

γ′0 = Uγ0Ũ and i′ = U iŨ . (2.8)

A corresponding change in the wave function,

ψ → ψ′ = ψŨ , (2.9)

induces a mapping of the Dirac equation (2.5) into an equation of the same form:

5ψi′h̄− eAψ′ = mψ′γ′0 . (2.10)

This transformation is no more than a change of constants in the Dirac equation. It need
not be coupled to a change in reference frame. Indeed, in the matrix formulation it can be
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interpreted as a mere change in matrix representation, that is, in the particular matrices
selected to be associated with the vectors γµ, for (2.2) gives

Ψ = ψu = ψ′u′ , (2.11)

where u′ = Uu.
For the special case

U = eiϕ0 , (2.12)

where ϕ0 is a scalar constant, (2.8) gives γ′0 = γ0 and i′ = i, so ψ and

ψ′ = ψeiϕ0 (2.13)

are solutions of the same equation. In other words, the Dirac equation does not distinguish
solutions differing by a constant phase factor.

Note that σ2 = γ2γ0 anticommutes with both γ0 and i = iσ3, so multiplication of the
Dirac equation (2.5) on the right by σ2 yields

5ψC ih̄− eAψC = mψCγ0 , (2.14)

where
ψC = ψσ2 . (2.15)

The net effect is to change the sign of the charge in the Dirac equation, therefore, the
transformation ψ → ψC can be interpreted as charge conjugation. Of course, the definition
of charge conjugate is arbitrary up to a constant phase factor such as in (2.13). The
main thing to notice here is that in (2.15) charge conjugation, like parity conjugation, is
formulated as a completely geometrical transformation, without any reference to a complex
conjugation operation of obscure physical meaning. Its geometrical meaning is determined
by what it does to the “frame of observables” identified below.

For any even multivector ψ, ψψ̃ is also even but, according to (1.14), its bivector part

must vanish because (ψψ̃)˜ = ψψ̃. Therefore, we can write

ψψ̃ = ρeiβ , (2.16a)

where ρ and β are scalars. If ρ 6= 0 we can derive from ψ an even multivector R = ψ(ψψ̃)−
1
2

satisfying
RR̃ = R̃R = 1 . (2.16b)

Hence ψ has the Lorentz invariant decomposition

ψ = (ρeiβ)
1
2R . (2.17)

This decomposition applies to the real Dirac wave function ψ = ψ(x), because it is an even
multivector. At each spacetime point x, the rotor R = R(x) determines a Lorentz rotation
of a given fixed frame of vectors {γµ} into a frame {eµ = eµ(x)} given by

eµ = RγµR̃ . (2.18)
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In other words, R determines a unique frame field on spacetime.
We shall see that that the physical interpretation given to the frame field {eµ} is a key

to the interpretation of the entire Dirac theory. Specifically, it will be seen that the eµ can
be interpreted directly as descriptors of the kinematics of electron motion. It follows from
(2.18), therefore, that the rotor field R = R(x) is a descriptor of electron kinematics. The

factor (ρeiβ)
1
2 will be given a statistical interpretation. Thus, the canonical form (2.17) is

an invariant decomposition of the Dirac wave function into a 2-parameter statistical factor
(ρeiβ)

1
2 and a 6-parameter kinematical factor R.

From (2.17) and (2.18) we find that

ψγµψ̃ = ψ′γµψ̃
′ = ρeµ . (2.19)

Note that that we have here a set of four linearly independent vector fields which are invari-
ant under the transformation specified by (2.7) and (2.8). Thus these fields do not depend
on any coordinate system, despite the appearance of γµ on the left side of (2.19). Note
also that the factor eiβ/2 in (2.17) does not contribute to (2.19), because the pseudoscalar
i anticommutes with the γµ.

Two of the vector fields in (2.19) are given physical interpretations in the standard Dirac
theory. First, the vector field

ψγ0ψ̃ = ρe0 = ρv (2.20)

is the Dirac current, which, in accord with the standard Born interpretation, we interpret
as a probability current. Thus, at each spacetime point x the timelike vector v = v(x) =
e0(x) is interpreted as the probable (proper) velocity of the electron, and ρ = ρ(x) is the
relative probability (i.e. proper probability density) that the electron actually is at x. The
correspondence of (2.20) to the conventional definition of the Dirac current is displayed in
Table I.

The second vector field
1
2 h̄ψγ3ψ̃ = ρ 1

2 h̄e3 = ρs (2.21)

will be interpreted as the spin vector density. Justification for this interpretation comes
from angular momentum conservation treated in the next Section. Note in Table I that
this vector quantity is represented as a pseudovector (or axial vector) quantity in the
conventional matrix formulation. The spin pseudovector is correctly identified as is, as
shown below.

Angular momentum is actually a bivector quantity. The spin angular momentum S =
S(x) is a bivector field related to the spin vector field s = s(x) by

S = isv = 1
2 h̄ie3e0 = 1

2 h̄Rγ2γ1R̃ = 1
2R(ih̄)R̃ . (2.22)

The right side of this chain of equivalent representations shows the relation of the spin
to the unit imaginary i appearing in the Dirac equation (2.5). Indeed, it shows that the
bivector 1

2 ih̄ is a reference representation of the spin which is rotated by the kinematical
factor R into the local spin direction at each spacetime point. This establishes an explicit
connection between spin and imaginary numbers which is inherent in the Dirac theory but
hidden in the conventional formulation, a connection, moreover, which remains even in the
Schroedinger approximation, as seen in a later Section.
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TABLE I: BILINEAR COVARIANTS

Scalar Ψ̃Ψ = Ψ†γ0Ψ = (ψψ̃)(0) = ρ cosβ

Vector Ψ̃γµΨ = Ψ†γ0γµΨ = (ψγ0ψ̃γµ)(0) = (ψ†γ0γµψ)(0)

= (ψγ0ψ̃) · γµ = (ρv) · γµ = ρvµ

Bivector
e

m

i′h̄

2
Ψ̃

1

2

(
γµγν − γνγµ

)
Ψ =

eh̄

2m

(
γµγνψγ2γ1ψ̃

)
(0)

= (γµ ∧ γν) · (M) = Mµν =
e

m
ρ(ieiβsv) · (γµ ∧ γν)

Pseudovector∗ 1
2 i
′h̄Ψ̃γµγ5Ψ = 1

2 h̄(γµψγ3ψ̃)(0) = γµ · (ρs) = ρsµ

Pseudoscalar∗ Ψ̃γ5Ψ = (iψψ̃)(0) = −ρ sinβ

∗Here we use the more conventional symbol γ5=γ0γ1γ2γ3 for the matrix representation
of the unit pseudoscalar i.

The hidden relation of spin to the imaginary i′ in the Dirac theory can be made manifest
in another way. Multiplying (2.21) on the right by ψ and using (2.17) we obtain

Sψ = 1
2ψih̄ . (2.23)

Then using (2.1c) and (2.2) to translate this into the matrix formalism, we obtain

SΨ = 1
2 ih̄Ψ . (2.24)

Thus, 1
2 i
′h̄ is the eigenvalue of the invariant “spin operator”

S = 1
2S

αβγαγβ . (2.25)

Otherwise said, the factor i′h̄ in the Dirac theory is a representation of the spin bivector by
its eigenvalue. The eigenvalue is imaginary because the “spin tensor” Sαβ is skewsymmetric.
The fact that S = S(x) specifies a definite spacelike tangent plane at each point x is
completely suppressed in the i′h̄ representation. It should be noted also that (2.24) is
completely general, applying to any Dirac wave function whatsoever.

The identification of Sαβ in (2.25) as spin tensor is not made in standard accounts of the
Dirac theory, though of course it must be implicated. Standard accounts (e.g. p. 59 of Ref.
22) either explicitly or implicitly introduce the spin (density) tensor

ρSναβ =
i′h̄

2
Ψ̃γν ∧ γα ∧ γβΨ =

i′h̄

2
Ψ̃γ5γµΨε

µναβ = ρsµε
µναβ , (2.26)
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where use has been made of the identity

γν ∧ γα ∧ γβ = γ5γµε
µναβ (2.27a)

and the expression for sµ in Table I. Note that the “alternating tensor” εµναβ can be defined
simply as the product of two pseudoscalars, thus

εµναβ = i(γµ ∧ γν ∧ γα ∧ γβ) = (iγµγνγαγβ)(0)

= (γ3 ∧ γ2 ∧ γ1 ∧ γ0) · (γµ ∧ γν ∧ γα ∧ γβ) . (2.27b)

Alternatively,

γµ ∧ γν ∧ γα ∧ γβ = −iεµναβ . (2.27c)

From (2.26) and (2.27b) we find

Sναβ = sµε
µναβ = i(s ∧ γν ∧ γα ∧ γβ) = (is) · (γν ∧ γα ∧ γβ) . (2.28)

The last expression shows that the Sναβ are simply tensor components of the pseudovector
is. Contraction of (2.28) with vν = v · γν and use of duality (1.16b) gives the desired
relation between Sναβ and Sαβ :

vνS
ναβ = i(s ∧ v ∧ γα ∧ γβ) = [ i(s ∧ v) ] · (γα ∧ γβ) = Sαβ . (2.29)

Its significance will be made clear in the discussion of angular momentum conservation.
Note that the spin bivector and its relation to the unit imaginary is invisible in the

standard version of the bilinear covariants in Table I. The spin S is buried there in the
magnetization (tensor or bivector). The magnetization M can be defined and related to
the spin by

M =
eh̄

2m
ψγ2γ1ψ̃ =

eh̄

2m
ρeiβe2e1 =

e

2m
ρSeiβ . (2.30)

The interpretation ofM as magnetization comes from the Gordon decomposition considered
in the next Section. Equation (2.30) reveals that in the Dirac theory the magnetic moment
is not simply proportional to the spin as often asserted; the two are related by a duality
rotation represented by the factor eiβ . It may be appreciated that this relation of M to S
is much simpler than any relation of Mαβ to Sναβ in the literature, another indication that
S is the most appropriate representation for spin. By the way, note that (2.30) provides
some justification for referring to β henceforth as the duality parameter. The name is
noncommittal to the physical interpretation of β, a debatable issue discussed later.

We are now better able to assess the content of Table I. There are 1 + 4 + 6 + 4 + 1 = 16
distinct bilinear covariants but only 8 parameters in the wave function, so the various
covariants are not mutually independent. Their interdependence has been expressed in
the literature by a system of algebraic relations known as “Fierz Identities” (e.g., see Ref.
23). However, the invariant decomposition of the wave function (2.17) reduces the relations
to their simplest common terms. Table I shows exactly how the covariants are related
by expressing them in terms of ρ, β, vµ, sµ, which constitutes a set of 7 independent
parameters, since the velocity and spin vectors are constrained by the three conditions
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that they are orthogonal and have constant magnitudes. This parametrization reduces the
derivation of any Fierz identity practically to inspection. Note, for example, that

ρ2 = (Ψ̃Ψ)2 + (Ψ̃γ5Ψ)2 = (Ψ̃γµΨ)(Ψ̃γµΨ) = −(Ψ̃γµγ5Ψ)(Ψ̃γµγ5Ψ) .

Evidently Table I tells us all we need to know about the bilinear covariants and makes
further reference to Fierz identities superfluous.

Note that the factor i′h̄ occurs explicitly in Table I only in those expressions involving
electron spin. The conventional justification for including the i′ is to make antihermitian
operators hermitian so the bilinear covariants are real. We have seen however that this
smuggles spin into the expressions. That can be made explicit by using (2.24) to derive the
general identity

i′h̄Ψ̃ΓΨ = Ψ̃ΓγαγβΨS
αβ , (2.31)

where Γ is any matrix operator.
Perhaps the most significant thing to note about Table I is that only 7 of the 8 parameters

in the wave function are involved. The missing parameter is the phase of the wave function.
To understand the significance of this, note also that, in contrast to the vectors e0 and e3
representing velocity and spin directions, the vectors e1 and e2 do not appear in Table I
except indirectly in the product e2e1. The missing parameter is one of the six parameters
implicit in the rotor R determining the Lorentz rotation (2.18). We have already noted
that 5 of these parameters are needed to determine the velocity and spin directions e0
and e3. By duality, these vectors also determine the direction e2e1 = ie3e0 of the “spin
plane” containing e1 and e2. The remaining parameter therefore determines the directions
of e1 and e2 in this plane. It is literally an angle of rotation in this plane and the spin
bivector Ŝ = e2e1 = R iR̃ is the generator of the rotation. Thus, we arrive at a geometrical
interpretation of the phase of the wave function which is inherent in the Dirac Theory. But
all of this is invisible in the conventional matrix formulation.

The purpose of Table I is to explicate the correspondence of the matrix formulation
to the real (STA) formulation of the Dirac theory. Once it is understood that the two
formulations are completely isomorphic, the matrix formulation can be dispensed with and
Table I becomes superfluous. By revealing the geometrical meaning of the unit imaginary
and the wave function phase along with this connection to spin, STA challenges us to
ascertain the physical significance of these geometrical facts, a challenge that will be met
in subsequent Sections.

3. OBSERVABLES AND CONSERVATION LAWS.

One of the miracles of the Dirac theory was the spontaneous emergence of spin in the
theory when nothing about spin seemed to be included in the assumptions. This miracle
has been attributed to Dirac’s derivation of his linearized relativistic wave equation, so
spin has been said to be “a relativistic phenomenon.” However, we have seen that the
Dirac operator (1.25) is equally suited to the formulation of Maxwell’s equation (1.28),
and we have concluded that the Dirac algebra arises from spacetime geometry rather than
anything special about quantum theory. The origin of spin must be elsewhere.

Our objective here is to ascertain precisely what features of the Dirac theory are responsi-
ble for its extraordinary empirical success and to establish a coherent physical interpretation
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which accounts for all its salient aspects. The geometric insights of STA provide us with
a perspective from which to criticize some conventional beliefs about quantum mechanics
and so leads us to some unconventional conclusions.

The first point to be understood is that there is more to the Dirac theory than the Dirac
equation. Indeed, the Dirac wave function has no physical meaning at all apart from as-
sumptions that relate it to physical observables. Now, there is a strong tradition in quantum
mechanics to associate Hermitian Operators with Observables and their eigenvalues with
observed values. Let’s call this the HOO Principle. There is no denying that impressive re-
sults have been achieved in quantum mechanics using the HOO Principle. However, we shall
see that certain features of the Dirac theory conflict with the view that the HOO Principle
is a universal principle of quantum mechanics. It is contended here that the successes of
HOO Principle derive from one set of operators only, namely, the kinetic energy-momentum
operators pµ defined in the convention matrix theory by

pµi = i′h̄∂µ − eAµ . (3.1)

Moreover, it will be seen that STA leads us to a new view on why these operators are so
significant in quantum mechanics.

In the approach taken here observables are defined quite literally as quantities which can
be measured experimentally either directly or indirectly. Observables of the Dirac theory
are associated directly with the Dirac wave function rather than with operators, though
operators may be used to express the association. A set of observables is said to be complete
if it supplies a coherent physical interpretation for all mathematical features of the wave
function. A complete set of observables is determined by the conservation laws for electron
position, charge, energy-momentum and angular momentum. The task now is to specify
these observables and their conservation laws unambiguously.

We assume first of all that the Dirac theory describes the electron as a point particle,
but the description is statistical and the position probability current is to be identified with
the Dirac current (2.20). This interpretation can be upheld only if the Dirac current is
rigorously conserved. To establish that, we follow Appendix B of Ref. 4, multiplying the
Dirac equation (2.5) on the right by iγ0γ3γµψ̃ and using (2.18) to get

(5ψ)h̄γµψ̃ = −imρeiβe3eµ + eρAe1e2eµ .

The scalar part of this equation gives us

5 · (ρeµ) =
2

h̄
ρeµ · (e3m sinβ + (e2e1) ·A) . (3.2)

Thus we have the four equations

5 · (ρv) = ∂µ(ρv
µ) = 0 , (3.3)

5 · (ρs) = −m sinβ , (3.4)

5 · (ρe1) =
2

h̄
ρA · e2 , (3.5)

5 · (ρe2) = − 2

h̄
ρA · e1 . (3.6)
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Equation (3.3) is the desired position probability conservation law. The meaning of the
other equations remains to be determined.

There are other conserved currents besides the Dirac current, so further argument is
needed to justify its interpretation as probability current. We must establish the internal
and external validity of the interpretation, that is, we must how that internally it is logically
coherent with the interpretation of other observables and externally it agrees with empirical
observations.

The Dirac current ρv assigns a unit timelike vector v(x) to each spacetime point x where
ρ 6= 0. In keeping with the statistical interpretation of the Dirac current, we interpret v(x)
as the expected proper velocity of the electron at x, that is, the velocity predicted for the
electron if it happens to be at x. In the γ0-system, the probability that the electron actually
is at x is given by

(ρv) · (γ0d
3x) . (3.7)

It is normalized so that ∫
d3x ρ0 = 1 , (3.8)

where d3x = | d3x | and the integral is over the spacelike hyperplane defined by the equation
x · γ0 = t, and

ρ0 = ρv0 = (ρv) · γ0 = (ψγ0ψ̃γ0)(0) = (ψψ†)(0) (3.9)

is the probability density in the γ0-system.

The velocity v(x) defines a local reference frame at x called the electron rest frame. The
proper probability density ρ = (ρv) · v can be interpreted as the probability density in the
rest frame. By a well known theorem, the probability conservation law (3.3) implies that
through each spacetime point there passes a unique integral curve which is tangent to v at
each of its points. Let us call these curves (electron) streamlines. In any spacetime region
where ρ 6= 0, a solution of the Dirac equation determines a family of streamlines which
fills the region with exactly one streamline through each point. The streamline through
a specific point x0 is the expected history of an electron at x0, that is, it is the optimal
prediction for the history of an electron which actually is at x0 (with relative probability
ρ(x0), of course!). Parametrized by proper time τ , the streamline x = x(τ) is determined
by the equation

dx

dτ
= v(x(τ)) . (3.10)

The physical significance of these predicted electron histories is discussed in the next Sec-
tion.

Although our chief concern will be with observables describing the flow of conserved
quantities along streamlines, we pause to consider the main theorem relating local flow to
the time development of spatially averaged observables. The result is helpful for comparison
with the standard operator approach to the Dirac theory. Let f be some observable in the
Dirac theory represented by a multivector-valued function f = f(x). The average value of
f at time t in the γ0-system is defined by

〈 f 〉 =

∫
d3x ρ0f . (3.11)
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To determine how this quantity changes with time, we use

∂µ(ρv
µf) = ρv ·5f = ρ

df

dτ
= ρ0

df

dt
, (3.12)

with the derivative on the right taken along an electron streamline. Assuming that ρ0

vanishes at spatial infinity, Gauss’s theorem enables us to put (3.12) in the useful integral
form

d

dt

〈
f
〉

=

∫
d3x ρv ·5f =

〈
df

dt

〉
. (3.13)

This result is known as “Reynold’s Theorem” in hydrodynamics.
Taking the proper position vector x as observable, we have the average position of the

electron given by

〈x 〉 =

∫
d3x ρ0x , (3.14)

and application of (3.13) gives the average velocity

d

dt
〈x 〉 =

∫
d3x ρv =

〈
dx

dt

〉
. (3.15)

To see that this is a sensible result, use the space-time splits (1.19a) and (1.22a) to get

〈x 〉γ0 = 1 + 〈x 〉 (3.16)

from (3.14), and
d

dt
〈x 〉γ0 = 1 + 〈v 〉 (3.17)

from, (3.15). Thus, we have

d

dt
〈x 〉 = 〈v 〉 =

〈
dx

dt

〉
. (3.18)

These elementary results have been belabored here because there is considerable dispute in
the literature on how to define position and velocity operators in the Dirac theory.24 The
present definitions of position and velocity (without operators!) are actually equivalent to
the most straight-forward operator definitions in the standard formulation. To establish
that we use Table I to relate the components of in (3.18) to the matrix formulation, with
the result

〈v 〉 ·σk = 〈v ·σk 〉 =

∫
d3xΨ†αkΨ , (3.19)

where, as noted before, αk = γkγ0 = γ0γ
k is the matrix analog of σk = γkγ0 in STA.

The αk are hermitian operators often interpreted as “velocity operators” in accordance
with the HOO Principle. However, this leads to peculiar and ultimately unphysical conclu-
sions.25 STA resolves the difficulty by revealing that the commutation relations for the αk
have a geometrical meaning independent of any properties of the electron. It shows that the
αk are “velocity operators” in only a trivial sense. The role of the αk in (3.19) is isomorphic
to the role of basis vectors σk used to select components of the vector v. The velocity
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vector is inherent in the bilinear function ΨΨ†, not in the operators αk. The αk simply
pick out its components in (3.19). Accordingly, the equivalence of STA representations to
conventional operator representations exhibited in (3.19) and Table I leads to two important
conclusions:7 The hermiticity of the αk is only incidental to their role in the Dirac theory,
and their eigenvalues have no physical significance whatever! These concepts play no role
in the STA formulation.

Having chosen a particle interpretation for the Dirac theory, the assumption that the
particle is charged implies that the charge current (density) J must be proportional to the
Dirac current; specifically,

J = eψγ0ψ̃ = eρv . (3.20)

Then charge conservation 5 · J = 0 is an immediate consequence of probability conserva-
tion. Later it will be seen that there is more to this story.

One more assumption is needed to complete the identification of observables in the Dirac
theory. It comes from the interpretation of the pµ in (3.1) as kinetic energy-momentum
operators. In the STA formulation they are defined by

pµ = i h̄∂µ − eAµ , (3.21)

where the underbar signifies a “linear operator” and the operator i signifies right multipli-
cation by the bivector i = γ2γ1, as defined by

iψ = ψi . (3.22)

The importance of (3.21) can hardly be overemphasized. Above all, it embodies the fruitful
“minimal coupling” rule, a fundamental principle of gauge theory which fixes the form of
electromagnetic interactions. In this capacity it plays a crucial heuristic role in the original
formulation of the Dirac equation, as is clear when the equation is written in the form

γµpµψ = ψγ0m. (3.23)

However, the STA formulation tells us even more. It reveals geometrical properties of the
pµ which provide clues to a deeper physical meaning. We have already noted a connection of
the factor ih̄ with spin in (2.22). We establish below that this connection is a consequence of
the form and interpretation of the pµ. Thus, spin was inadvertently smuggled into the Dirac
theory by the pµ, hidden in the innocent looking factor i′h̄. Its sudden appearance was only
incidentally related to relativity. History has shown that it is impossible to recognize this
fact in the conventional formulation of the Dirac theory, with its emphasis on attributing
physical meaning to operators and their commutation rules. The connection of i′h̄ with
spin is not inherent in the pµ alone. It appears only when the pµ operate on the wave
function, as is evident in (2.24). This leads to the conclusion that the significance of the
pµ lies in what they imply about the physical meaning of the wave function. Indeed, the
STA formulation reveals the pµ have something important to tell us about the kinematics
of electron motion.

The operators pµ or, equivalently, pµ = γµ · γν pν are given a physical meaning by using
them to define the components Tµν of the electron energy-momentum tensor:

Tµν = Tµ · γν = (γ0ψ̃ γ
µpνψ)(0) . (3.24)
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TABLE II: Observables of the energy-momentum operator,
relating real and matrix versions.

Energy-momentum tensor Tµν = Tµ · γν = (γ0ψ̃ γ
µpνψ)(0)

= Ψ̃γµpνΨ

Kinetic energy density T 00 = (ψ†p0ψ)(0) = Ψ†p0Ψ

Kinetic momentum density T 0k = (ψ†pkψ)(0) = Ψ†pkΨ

Angular Momentum tensor Jναβ =
[
T ν ∧ x+ iρ(s ∧ γν)

]
· (γα ∧ γβ)

= T ναxβ − T νβxα − i′h̄

2
Ψ̃γ5γµΨε

µναβ

Gordon current Kµ =
e

m
(ψ̃ pµψ)(0) =

e

m
Ψ̃pµΨ

Its matrix equivalent is given in Table II. As mentioned in the discussion of the electro-
magnetic energy-momentum tensor,

Tµ = T (γµ) = Tµνγν (3.25)

is the energy-momentum flux through a hyperplane with normal γµ. The energy-momentum
density in the electron rest system is

T (v) = vµT
µ = ρp . (3.26)

This defines the “expected” proper momentum p = p(x). The observable p = p(x) is the
statistical prediction for the momentum of the electron at x. In general, the momentum
p is not collinear with the velocity, because it includes a contribution from the spin. A
measure of this noncollinearity is p∧ v, which should be recognized as defining the relative
momentum in the electron rest frame.

From the definition (3.24) of Tµν in terms of the Dirac wave function, momentum and
angular momentum conservation laws can be established by direct calculation from the
Dirac equation. First, we find that4 (See Appendix B for an alternative approach)

∂µT
µ = J · F , (3.27)

where J is the Dirac charge current (3.20) and F = 5 ∧ A is the electromagnetic field.
The right side of (3.27) is exactly the classical Lorentz force, so using (1.36) and denoting
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the electromagnetic energy-momentum tensor (1.35) by TµEM , we can rephrase (3.27) as the
total energy-momentum conservation law

∂µ(T
µ + TµEM ) = 0 . (3.28)

To derive the angular momentum conservation law, we identify Tµ ∧ x as the orbital an-
gular momentum tensor (See Table II for comparison with more conventional expressions).
Noting that ∂µx = γµ, we calculate

∂µ(T
µ ∧ x) = Tµ ∧ γµ − ∂µTµ ∧ x . (3.29)

To evaluate the first term on the right, we return to the definition (3.24) and find

γµT
µν = [ (pνψ)γ0ψ̃ ](1) = 1

2

[
(pνψ)γ0ψ̃ + ψγ0(p

νψ)˜ ] = (pνψ)γ0ψ̃ − ∂ν( 1
2 h̄ψiγ3ψ̃) .

Summing with γν and using the Dirac equation (3.23) to evaluate the first term on the
right while recognizing the spin vector (2.21) in the second term, we obtain

γνγµT
µν = mψψ̃ +5(ρsi) . (3.30)

By the way, the pseudoscalar part of this equation proves (3.4), and the scalar part gives
the curious result

Tµµ = Tµ · γµ = m cosβ . (3.31)

However, the bivector part gives the relation we are looking for:

Tµ ∧ γµ = Tµνγµ ∧ γν = 5 · (ρsi) = −∂µ(ρSµ) , (3.32)

where
Sµ = (is) · γµ = i(s ∧ γµ) (3.33)

is the spin angular momentum tensor already identified in (2.26) and (2.28). Thus from
(3.29) and (3.27) we obtain the angular momentum conservation law

∂µJ
µ = (F · J) ∧ x , (3.34)

where
J(γµ) = Jµ = Tµ ∧ x+ ρSµ (3.35)

is the angular momentum tensor, representing the total angular momentum flux in the γµ

direction. In the electron rest system, therefore, the angular momentum density is

J(v) = ρ(p ∧ x+ S) , (3.36)

where recalling (2.12), p∧x is recognized as the expected orbital angular momentum and as
already advertised in (2.22), S = isv can be indentified as an intrinsic angular momentum
or spin. This completes the justification for interpreting S as spin. The task remaining is
to dig deeper and understand its origin.
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We now have a complete set of conservation laws for the observables r, v, S and p, but
we still need to ascertain precisely how p is related to the wave function. For that purpose
we employ the invariant decomposition ψ = (ρeiβ)

1
2R. First we need some kinematics. By

an argument used in Section 3, it is easy to prove that the derivatives of the rotor R must
have the form

∂µR = 1
2 ΩµR , (3.37)

where Ωµ = Ωµ(x) is a bivector field. Consequently the derivatives of the eν defined by
(2.18) have the form

∂µeν = Ωµ · eν . (3.38)

Thus Ωµ is the rotation rate of the frame {eν} as it is displaced in the direction γµ.
Now, with the help of (2.23), the effect of pν on ψ can be put in the form

pνψ = [ ∂ν(ln ρ+ iβ) + Ων ]Sψ − eAνψ . (3.39)

Whence

(pνψ)γ0ψ̃ = [ ∂ν(ln ρ+ iβ) + Ων ]iρs− eAνv . (3.40)

Inserting this in the definition (3.24) for the energy-momentum tensor, after some manip-
ulations beginning with is = Sv, we get the explicit expression

Tµν = ρ
[
vµ(Ων · S − eAν) + (γµ ∧ v) · (∂νS)− sµ∂νβ

]
. (3.41)

From this we find, by (3.26), the momentum components

pν = Ων · S − eAν . (3.42)

This reveals that (apart from the Aν contribution) the momentum has a kinematical mean-
ing related to the spin: It is completely determined by the component of Ων in the spin
plane. In other words, it describes the rotation rate of the frame {eµ} in the spin plane or,
if you will “about the spin axis.” But we have identified the angle of rotation in this plane
with the phase of the wave function. Thus, the momentum describes the phase change in all
directions of the wave function or, equivalently, of the frame {eµ}. A physical interpretation
for this geometrical fact will be offered in Section 5.

The kinematical import of the operator pν is derived from its action on the rotor R. To
make that explicit, use (3.37) and (2.22) to get

(∂νR)ih̄R̃ = ΩνS = Ων · S + Ων ∧ S + ∂νS , (3.43)

where (2.22) was used to establish that

∂νS = 1
2 [ Ων , S ] = 1

2 (ΩνS − SΩν) . (3.44)

Introducing the abbreviation

iqν = Ων ∧ S , or qν = −(iS) ·Ων , (3.45)
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we can put (3.43) in the form

(pνR)R̃ = pν + iqν + ∂νS . (3.46)

This shows explicitly how the operator pν relates to kinematical observables, although the
physical significance of qν is obscure. Note that both pν and ∂νS contribute to Tµν in
(3.41), but qν does not. By the way, it should be noted that the last two terms in (3.41)
describe energy-momentum flux orthogonal to the v direction. It is altogether natural that
this flux should depend on the component of ∂νS as shown. However, the significance of
the parameter β in the last term remains obscure.

An auxiliary conservation law can be derived from the Dirac equation by decomposing
the Dirac current as follows. Solving (3.23) for the Dirac charge current, we have

J = eψγ0ψ̃ =
e

m
(pµψ)ψ̃ . (3.47)

The identity (3.46) is easily generalized to

(pµψ)ψ̃ = (pµ + iqµ)ρe
iβ + ∂µ(ρSe

iβ) . (3.48)

The right side exhibits the scalar, pseudoscalar and bivector parts explicitly. From the
scalar part we define the Gordon current:

Kµ =
e

m
[ (pµψ)ψ̃ ](0) =

e

m
(ψ̃ pµψ)(0) =

e

m
(pµρ cosβ − qµρ sinβ) . (3.49)

Or in vector form,

K =
e

m
ρ(p cosβ − q sinβ) . (3.50)

As anticipated in the last Section, from the last term in (3.48) we define the magnetization

M =
e

m
ρSeiβ . (3.51)

When (3.48) is inserted into (3.47), the pseudovector part must vanish, and vector part
gives us the so-called “Gordon decomposition”

J = K +5 ·M . (3.52)

This is ostensibly a decomposition into a conduction current K and a magnetization cur-
rent 5 ·M , both of which are separately conserved. But how does this square with the
physical interpretation already ascribed to J? It suggests that there is a substructure to
the charge flow described by J . Evidently, if we are to understand this substructure we
must understand the role of the parameter β so prominently displayed in (3.50) and (3.51).
A curious fact is that β does not contribute to the definition (2.20) for the Dirac current in
terms of the wave function; β is related to J only indirectly through the Gordon Relation
(3.52). This suggests that β characterizes some feature of the substructure.

So far we have supplied a physical interpretation for all parameters in the wave function
(2.17) except “duality parameter” β. The physical interpretation of β is more problematic
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than that of the other parameters. Let us refer to this as the β-problem. This problem
has not been recognized in conventional formulations of the Dirac theory, because the
structure of the theory was not analyzed in sufficient depth to identify it. The problem
arose, however, in a different guise when it was noted that the Dirac equation admits
negative energy solutions. The famous Klein paradox showed that negative energy states
could not be avoided in matching boundary conditions at a potential barrier. This was
interpreted as showing that electron-positron pairs are created at the barrier, and it was
concluded that second quantization of the Dirac wave function is necessary to deal with the
many particle aspects of such situations. However, recognition of the β-problem provides a
new perspective which suggests that second quantization is unnecessary, though this is not
to deny the reality of pair creation. An analysis of the Klein Paradox from this perspective
has been given by Steve Gull.26

In the plane wave solutions of the Dirac equation (next Section), the parameter β un-
equivocally distinguishes electron and positron solutions. This suggests that β parametrizes
an admixture of electron-positron states where cosβ is the relative probability of observing
an electron. Then, while ρ = ρ(x) represents the relative probability of observing a particle
at x, ρ cosβ is the probability that the particle is an electron, while ρ sinβ is the probability
that it is an positron. On this interpretation, the Gordon current shows a redistribution
of the current flow as a function of β. It leads also to a plausible interpretation for the
β-dependence of the magnetization in (3.51). In accordance with (4.39), in the electron
rest system determined by J , we can split M into

M = −P + iM , (3.53)

where, since v · s = 0,

iM =
e

m
Sρ cosβ (3.54)

is the magnetic moment density, while

P = − e

m
iSρ sinβ (3.55)

is the electric dipole moment density. The dependence of P on sinβ makes sense, because
pair creation produces electric dipoles. On the other hand, cancelation of magnetic moments
by created pairs may account for the reduction of M by the cosβ factor in (3.54). It is
tempting, also, to interpret equation (3.4) as describing a creation of spin concomitant with
pair creation.

Unfortunately, there are difficulties with this straight forward interpretation of β as an
antiparticle mixing parameter. The standard Darwin solutions of the Dirac hydrogen atom
exhibit a strange β dependence which cannot reasonably be attributed to pair creation.
However, the solutions also attribute some apparently unphysical properties to the Dirac
current; suggesting that they may be superpositions of more basic physical solutions. In-
deed, Heinz Krüger has recently found hydrogen atom solutions with β = 0.27

It is easy to show that a superposition of solutions to the Dirac equation with β = 0
can produce a composite solution with β 6= 0. It may be, therefore, that β characterizes a
more general class of statistical superpositions than particle-antiparticle mixtures. At any
rate, since the basic observables v, S and p are completely characterized by the kinematical
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factor R in the wave function, it appears that a statistical interpretation for β as well as ρ
is appropriate.

4. ELECTRON TRAJECTORIES

In classical theory the concept of particle refers to an object of negligible size with a
continuous trajectory. It is often asserted that it is meaningless or impossible in quantum
mechanics to regard the electron as a particle in this sense. On the contrary, it asserted here
that the particle concept is not only essential for a complete and coherent interpretation of
the Dirac theory, it is also of practical value and opens up possibilitiesfor new physics at
a deeper level. Indeed, in this Section it will be explained how particle trajectoriescan be
computed in the Dirac theory and how this articulates perfectly with the classical theory
formulated in Section 3.

David Bohm has long been the most articulate champion of the particle concept in quan-
tum mechanics.28 He argued that the difference between classical and quantum mechanics
is not in the concept of particle itself but in the equation for particles trajectories. From
Schroedinger’s equation he derived an equation of motion for the electron which differs
from the classical equation only in a stochastic term called the “Quantum Force.” He was
careful, however, not to commit himself to any special hypothesis about the origins of the
Quantum Force. He accepted the form of the force dictated by Schroedinger’s equation.
However, he took pains to show that all implications of Schroedinger theory are compatible
with a strict particle interpretation. The same general particle interpretation of the Dirac
theory is adopted here, and the generalization of Bohm’s equation derived below provides
a new perspective on the Quantum Force.

We have already noted that each solution of the Dirac equation determines a family
of nonintersecting streamlines which can be interpreted as “expected” electron histories.
Here we derive equations of motion for observables of the electron along a single history
x = x(τ). By a space-time split the history can always be projectedinto a particle trajectory
x(τ) = x(τ)∧ γ0 in a given inertial system. It will be convenient to use the terms ‘history’
and ‘trajectory’ almost interchangeably. The representation of motion by trajectories is
most helpful in interpreting experiments, but histories are usually more convenient for
theoretical purposes.

The main objection to a strict particle interpretation of the Dirac and Schroedinger
theories is the claim that a wave interpretation is essential to explain diffraction. This
claim is false, as should be obvious from the fact that, as we have noted, the wave func-
tion determines a unique family of electron trajectories. For double slit diffraction these
trajectories have been calculated from Schroedinger’s equation,29 and, recently, from the
Dirac equation.44,45 Sure enough, after flowing uniformly through the slits, the trajectories
bunch up at diffraction maxima and thin out at the minima. According to Bohm, the cause
of this phenomenon is the Quantum Force rather than wave interference. This shows at
least that the particle interpretation is not inconsistent with diffraction phenomena, though
the origin of the Quantum Force remains to be explained. The obvious objections to this
account of diffraction have been adequately refuted in the literature.29,30 It is worth noting,
though, that this account has the decided advantage of avoiding the paradoxical “collapse
of the wave function” inherent in the conventional “dualist” explanation of diffraction. At
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no time is it claimed that the electron spreads out like a wave to interfere with itself and
then “collapse” when it is detected in a localized region. The claim is only that the electron
is likely to travel on one of a family of possible trajectories consistent with experimental
constraints; which trajectory is known initially only with a certain probability, though it
can be inferred more precisely after detection in the final state. Indeed, it is possible then
to infer which slit the electron passed through.29 These remarks apply to the Dirac theory
as well as to the Schroedinger theory, though there are some differences in the predicted
trajectories,45,46 because the Schroedinger current is the nonrelativistic limit of the Gordon
current rather than the Dirac current.9

The probability density ρ0 is literally an observable in a diffraction pattern, though not
in intermediate states of a diffraction experiment. The same can be said for the velocities
of detected electrons. This is justification for referring to ρ and v as “observables,” though
they are not associated with any operators save the Dirac wave function itself. But is
it equally valid to regard them as “observables” in an atom? Though the Dirac theory
predicts a family of orbits (or trajectories) in an atom, most physicists don’t take this
seriously, and it is often asserted that it is meaningless to say that the electron has a
definite velocity in an atom. But here is some evidence to the contrary that should give
the sceptics pause: The hydrogen s-state wave function is spherically symmetric and its
Schroedinger (or Gordon) current vanishes, so no electron motion is indicated. However,
the radial probability distribution has a maximum at Bohr radius. This would seem to be
no more than a strange coincidence, except for the fact that the Dirac current does not
vanish for an s-state, because the magnetization current is not zero. Moreover, the average
angular momentum associated with this current is h̄,9 exactly as in the Bohr theory! Now
comes the experimental evidence. When negative muons are captured in atomic s-states
their lifetimes are increased by a time dilation factor corresponding to a velocity of — you
guessed it! — the Bohr velocity. Besides the idea that an electron in an s-state has a
definite velocity, this evidence supports the major contention that the electron velocity is
more correctly described by the Dirac current than by the Gordon current.

Now let us investigate the equations for motion along a Dirac streamline x = x(τ). On
this curve the kinematical factor in the Dirac wave function (2.17) can be expressed as a
function of proper time

R = R(x(τ)) . (4.1)

By (2.18), (2.20) and (3.10), this determines a comoving frame

eµ = RγµR̃ (4.2)

on the streamline with velocity v = e0, while the spin vector s and bivector S are given as
before by (2.21) and (2.22). In accordance with (3.37), differentiation of (4.1) leads to

Ṙ = v ·5R = 1
2ΩR , (4.3)

where the overdot indicates differentiation with respect to proper time, and

Ω = vµΩµ = Ω(x(τ)) (4.4)

is the rotational velocity of the frame {eµ}. Accordingly,

ėµ = v ·5 eµ = Ω · eµ . (4.5)
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But these equations are identical in form to those for the classical theory of a relativistic
rigid body with negligible size.6 This is a consequence of the particle interpretation. In
Bohmian terms, the only difference between classical and quantum theory is in the func-
tional form of Ω. Our main task, therefore, is to investigate what the Dirac theory tells us
about Ω. Among other things, that automatically gives us the classical limit formulated as
in Ref. 6, a limit in which the electron still has a nonvanishing spin of magnitude h̄/2.

From (3.42) we immediately obtain

Ω · S = (p+ eA) · v = 1
2 h̄ω . (4.6)

This defines rate of rotation in the spin plane, ω = ω(x(τ)), as a function of the electron
momentum. For a free particle (considered below), we find that it “spins” with the ultrahigh
frequency

ω =
2m

h̄
= 1.6× 1021 s−1 . (4.7)

According to (4.6), this frequency will be altered by external fields.
Equation (4.6) is part of a more general equation obtained from (3.43):

ΩS = (p+ eA) · v + i(q · v) + Ṡ . (4.8)

As an interesting aside, this can be solved for

Ω = ṠS−1 + (q · v)iS−1 + (p+ eA) · vS−1 , (4.9)

where S−1 = is−1v. Whence,

v̇ = Ω · v = (Ṡ · v)S−1 − (q · v)s−1 . (4.10)

This shows something about the coupling of spin and velocity, but it is not useful for solving
the equations of motion.

A general expression for Ω in terms of observables can be derived from the Dirac equation.
This has been done in two steps in Ref. 4. The first step yields the interesting result

Ω = −5∧ v + v · (i5β) + (m cosβ + eA · v)S−1 . (4.11)

But this tells us nothing about particle streamlines, since

v̇ = v · (5∧ v) (4.12)

is a mere identity, which can be derived from (1.12) and the fact that v2 is constant. The
second step yields

−5∧ v + v · (i5β) = m−1(eFeiβ +Q) , (4.13)

where Q has the complicated form

Q = −eiβ [ ∂µWµ + γµ ∧ γν(WµW ν)S−1 ](0) , (4.14)

with
Wµ = (ρeiβ)−1∂µ(ρe

iβS) = ∂µS + S∂µ(ln ρ+ iβ) . (4.15)
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Inserting (4.13) in (4.11), we get from (4.5) and (3.44) the equations of motion for velocity
and spin:

mv̇ = e(Feiβ) · v +Q · v , (4.16)

Ṡ = F×
( e
m
Seiβ

)
+Q×S , (4.17)

where A×B = 1
2 (AB −BA) is the commutator product.

Except for the surprising factor eiβ , the first term on the right of (4.16) is the classical
Lorentz force. The term Q · v is the generalization of Bohm’s Quantum Force. A crucial
fact to note from (4.15) is that the dependence of the Quantum Force on Plank’s constant
comes entirely from the spin S. This spin dependence of the Quantum Force is hidden in the
Schroedinger approximation, but it can be shown to be implicit there nevertheless.9 The
classical limit can be characterized first by ρ → 0 and ∂µ ln ρ → 0; second, by ∂µS = vµṠ,
which comes from assuming that only the variation of S along the history can affect the

motion. Accordingly, (4.14) reduces to Q =
..
S , and for the limiting classical equations of

motion for a particle with intrinsic spin we obtain13

mv̇ = (eF −
..
S ) · v , (4.18)

mṠ = (eF −
..
S )×S . (4.19)

These coupled equations have not been seriously studied. Of course, they should be studied
in conjunction with the spinor equation (4.3).

In the remainder of this Section we examine classical solutions of the Dirac equation,
that is, solutions whose streamlines are classical trajectories. For a free particle (A = 0),
the Dirac equation (2.5) admits plane wave solutions of the form

ψ = (ρeiβ)
1
2R = ρ

1
2 eiβ/2R0e

−ip·x/h̄ , (4.20)

where the kinematical factor R has been decomposed to explicitly exhibit its spacetime
dependence in a phase factor. Inserting this into (2.5) and using 5p · x = p, we obtain

pψ = ψγ0m. (4.21)

Solving for p we get
p = meiβRγ0R̃ = mve−iβ . (4.22)

This implies eiβ = ±1, so
eiβ/2 = 1 or i , (4.23)

and p = ±mv corresponding to two distinct solutions. One solution appears to have
negative energy E = p · γ0, but that can be rectified by changing the sign in the phase of
the “trial solution” (4.20).

Thus we obtain two distinct kinds of plane wave solutions with positive energy E = p · γ0:

ψ− = ρ
1
2R0e

−ip·x/h̄ , (4.24)

ψ+ = ρ
1
2 iR0e

+ip·x/h̄ . (4.25)
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We can identify these as electron and positron wave functions. Indeed, the two solutions
are related by charge conjugation. According to (2.15), the charge conjugate of (4.24) is

ψC− = ψ−σ2 = ρ
1
2 iR′0e

−ip·x/h̄ , (4.26a)

where
R′0 = R0(−iσ2) . (4.26b)

As seen below, the factor −iσ2 represents a spatial rotation which just “flips” the direction
of the spin vector. Evidently (4.25) and (4.26a) are both positron solutions, but with
oppositely directed spins.

Determining the comoving frame (4.2) for the electron solution (4.24), we find that the

velocity v = R0γ0R̃0 and the spin s = 1
2 h̄R0γ3R̃0 are constant, but, for k = 1, 2,

ek(τ) = ek(0)e−p·x/S = ek(0)ee2e1ωτ , (4.27)

where τ = v · x and ω is given by (4.7). Thus, the streamlines are straight lines along which
the spin is constant and e1 and e2 rotate about the “spin axis” with the ultrahigh frequency
(4.7) as the electron moves along the streamline. A similar result is found for the positron
solution.

For applications, the constants in the solution must be specified in more detail. If the
wave functions are normalized to one particle per unit volume V in the γ0-system, then we
have

ρ0 = γ0 · (ρv) =
1

V
or ρ =

m

EV
=

1

γ0 · vV
.

Following the procedure beginning with (2.13), we make the space-time split

R = LU where U = U0e
−ip·x/h̄ . (4.28)

The result of calculating L from γ0 and the momentum p has already been found in (2.24).
As in (2.19) and (3.37), it is convenient to represent the spin direction by the relative vector

σ = Uσ3Ũ . (4.29)

This is all we need to characterize spin. But to make contact with more conventional repre-
sentations, we decompose it as follows: Choosing σ3 as “quantization axis,” we decompose
U into spin up and spin down amplitudes denoted by U+ and U− respectively, and defined
by

U±σ3 = ±σ3U± (4.30)

or
U± = 1

2 (U ± σ3U) . (4.31)

Thus
U = U+ + U− . (4.32)

It follows that
UŨ = |U+ |2 + |U− |2 = 1 , (4.33a)
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U+Ũ− + U−Ũ+ = 0 , (4.33b)

σ = Uσ3Ũ =
{
|U+ |2 − |U− |2

}
σ3 + 2U−Ũ+σ3 . (4.34)

Since σσ3 = σ ·σ3 + i(σ×σ3),

σ ·σ3 = |U+ |2 − |U− |2 , (4.35a)

σ3×σ = 2iU−Ũ+ . (4.35b)

This decomposition into spin up and down amplitudes is usually given a statistical inter-
pretation in quantum mechanics, but we see here its geometrical significance.

The classical limit is ordinarily obtained as an “eikonal approximation” to the Dirac
equation. Accordingly, the wave function is set in the form

ψ = ψ0e
−iϕ/h̄ . (4.36)

Then the “amplitude” ψ0 is assumed to be slowly varying compared to the “phase” ϕ,
so the derivatives of ψ0 in the Dirac equation can be neglected to a good approximation.
Thus, inserting (4.36) into the Dirac equation, say in the form (3.47), we obtain

(5ϕ− eA)eiβ = mv . (4.37)

As in the plane wave case (4.22) this implies eiβ = ±1, and the two values correspond to
electron and positron solutions. For the electron case,

5ϕ− eA = mv . (4.38)

This defines a family of classical histories in spacetime. For a given external potential
A = A(x), the phase ϕ can be found by solving the “Hamilton-Jacobi equation”

(5ϕ− eA)2 = m2 , (4.39)

obtained by squaring (4.38). On the other hand, the curl of (4.38) gives

m5∧ v = −e5∧A = −eF . (4.40)

Dotting this with v and using the identity (4.12), we obtain exactly the classical equation
(3.6) for each streamline.

Inserting (4.40) into (4.11), we obtain

Ω =
e

m
F + (m+ eA · v)S−1 . (4.41)

Whence the rotor equation (4.3) assumes the explicit form

Ṙ =
e

2m
FR−Ri(m+ eA · v)/h̄ . (4.42)
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This admits a solution by separation of variables:

R = R0e
−iϕ/h̄ , (4.43)

where
Ṙ0 =

e

2m
FR0 (4.44)

and
ϕ̇ = v ·5ϕ = m+ eA · v . (4.45)

Equation (4.44) is identical with the classical equation in Ref. 6, while (4.45) can be obtained
from (4.38).

Thus, in the eikonal approximation the quantum equation for a comoving frame differs
from the classical equation only in having additional rotation in the spin plane. Quantum
mechanics also assigns energy to this rotation, and an explicit expression for it is obtained
by inserting (4.41) into (4.1), with the interesting result

p · v = m+
e

m
F · S . (4.46)

This is what one would expect classically if there were some sort of localized motion in the
spin plane. That possibility will be considered in the next Section.

The eikonal solutions characterized above are exact solutions of the Dirac equation when
the ψ0 in (4.38) satisfies

5ψ0 = 0 . (4.47)

This equation has a whole class of exact solutions where ψ0 is not constant. This class
is comparable in richness to the class of analytic functions in complex variable theory, for
(4.47) can be regarded as a generalization of the Cauchy-Riemann equations.15 Considering
the exact correspondence of the eikonal equations with classical theory, we can regard wave
functions of this class as exact classical solutions of the Dirac equation. An important
member of this class is the so-called Volkov solution for an electron in the field of an
electromagnetic plane wave.32 Remarkably, this solution of the Dirac equation is identical
to the solution of the classical spinor equation for a point charge in a plane wave field.6

As a final observation about the eikonal approximation, we note that it rules out the
possibility of finding any spin dependence of the streamlines such as that exhibited in equa-
tion (4.18). Evidently the spin dependence appears when the 5ϕ in (4.38) is generalized
to a vector field with nonvanishing curl.

5. THE ZITTERBEWEGUNG INTERPRETATION.

Now that we have the geometrical and physical interpretation of the Dirac wave function
well in hand, we are prepared to examine deeper possibilities of the Dirac theory. We have
seen that the kinematics of electron motion is completely characterized by the “Dirac rotor”
R in the invariant decomposition (2.17) of the wave function. The Dirac rotor determines a

comoving frame {eµ = RγµR̃} which rotates at high frequency in the e2e1-plane, the “spin
plane,” as the electron moves along a streamline. Moreover, according to (4.6) and (4.46),
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there is energy associated with this rotation, indeed, all the rest energy p · v of the electron.
These facts suggest that the electron mass, spin and magnetic moment are manifestation of
a local circular motion of the electron. Mindful that the velocity attributed to the electron
is an independent assumption imposed on the Dirac theory from physical considerations,
we recognize that this suggestion can be accommodated by giving the electron a component
of velocity in the spin plane. Accordingly, we now define the electron velocity u by

u = v − e2 = e0 − e2 . (5.1)

The choice u2 = 0 has the advantage that the electron mass can be attributed to kinetic
energy of self interaction while the spin is the corresponding angular momentum.11

This new identification of electron velocity makes the plane wave solutions a lot more
physically meaningful. For p · x = mv · x = mτ , the kinematical factor for the solution
(4.24) can be written in the form

R = e
1
2ΩτR0 , (5.2)

where Ω is the constant bivector

Ω = mc2S−1 =
2mc2

h̄
e1e2 . (5.3)

From (5.2) it follows that v is constant and

e2(τ) = eΩτe2(0) . (5.4)

So u = ż can be integrated immediately to get the electron history

z(τ) = vτ + (eΩτ − 1)r0 + z0 , (5.5)

where r0 = Ω−1e2(0). This is a lightlike helix centered on the Dirac streamline x(τ) =
vτ + z0 − r0. In the electron “rest system” defined by v, it projects to a circular orbit of
radius

| r0 | = |Ω−1 | = h̄

2m
= 1.9× 10−13m . (5.6)

The diameter of the orbit is thus equal to an electron Compton wavelength. For r(τ) =
eΩτr0, the angular momentum of this circular motion is, as intended, the spin

(mṙ) ∧ r = mṙr = mr2Ω = mΩ−1 = S . (5.7)

Finally, if z0 is varied parametrically over a hyperplane normal to v, equation (5.5) describes
a 3-parameter family of spacetime filling lightlike helixes, each centered on a unique Dirac
streamline. According to the Born statistical interpretation, the electron can be on any one
of these helixes with uniform probability.

Let us refer to this localized helical motion of the electron by the name zitterbewegung
(zbw) originally introduced by Schroedinger.33 Accordingly, we call ω = Ω · S the zbw
frequency and λ = ω−1 the zbw radius. The phase of the wave function can now be
interpreted literally as the phase in the circular motion, so we can refer to that as the zbw
phase.
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Although the frequency and radius ascribed to the zbw are the same here as in Schroeding-
er’s work, its role in the theory is quite different. Schroedinger attributed it to interference
between positive and negative energy components of a wave packet,33,34 whereas here it is
associated directly with the complex phase factor of a plane wave. From the present point
of view, wave packets and interference are not essential ingredients of the zbw, although the
phenomenon noticed by Schroedinger certainly appears when wave packets are constructed.
Of course, the present interpretation was not an option open to Schroedinger, because the
association of the unit imaginary with spin was not established (or even dreamed of), and
the vector e2 needed to form the spacelike component of the zbw velocity u was buried
out of sight in the matrix formalism. Now that it has been exhumed, we can see that the
zbw must play a ubiquitous role in quantum mechanics. The present approach associates
the zbw phase and frequency with the phase and frequency of the complex phase factor
in the electron wave function. Henceforth, this will be referred to as the zitterbewegung
interpretation of quantum mechanics.

The strength of the zbw interpretation lies first in its coherence and completeness in the
Dirac theory and second in the intimations it gives of more fundamental physics. It will
be noted that the zbw interpretation is completely general, because the definition (5.1) of
the zbw velocity is well defined for any solution of the Dirac equation. It is also perfectly
compatible with everything said about the interpretation of the Dirac theory in previous
Sections. One need only recognize that the Dirac velocity can be interpreted as the average
of the electron velocity over a zbw period, as expressed by writing

v = u . (5.8)

Since the period is on the order of 10−21s, it is v rather than u that best describes electron
motion in most experiments.

A possible difficulty with the interpretation of u as electron velocity is the fact that ρu
is not necessarily a conserved current, for from (3.6) we have

5 · (ρu) =
2

h̄
ρA · e1 . (5.9)

However, it is probably sufficient that ρv is conserved.
Perhaps the strongest theoretical support for the zbw interpretation is the fact that

it is fundamentally geometrical; it completes the kinematical interpretation of R, so all
components of R, even the complex phase factor, characterize features of the electron
history. This kinematical interpretation is made most explicitly in Ref. 14, where the
comoving frame {eµ} is interpreted as a Frenet frame, with vectors e1 and e3 corresponding
to first and third curvatures; the zbw radius is then seen as the radius of curvature for the
particle history.

The key ingredients of the zbw interpretation are the complex phase factor and the energy-
momentum operators pµ defined by (3.21). The unit imaginary i appearing in both of these
has the dual properties of representing the plane in which zbw circulation takes place and
generating rotations in that plane. The phase factor literally represents a rotation on the
electron’s circular orbit in the i-plane. Operating on the phase factor, the pµ computes
the phase rotation rates in all spacetime directions and associates them with the electron
energy-momentum. Thus, the zbw interpretation explains the physical significance of the
mysterious “quantum mechanical operators” pµ.
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The key ingredients of the zbw interpretation are preserved in the nonrelativistic limit
and so provide a zitterbewegung interpretation of Schroedinger theory. The nonrelativistic
approximation to the STA version of the Dirac theory, leading through the Pauli theory to
the Schroedinger theory, has been treated in detail elsewhere.15,13 But the essential point
can be seen by a split of the Dirac wave function y into the factors

ψ = ρ
1
2 eiβ/2LUe−i(m/h̄)t . (5.10)

In the nonrelativistic approximation three of these factors are neglected or eliminated and
ψ is reduced to the Pauli wave function

ψP = ρ
1
2U0e

−i(ϕ/h̄) , (5.11)

where the kinematical factor U has been broken into a phase factor describing the zbw
rotation and a spatial rotation factor U0 which rotates i into the direction of the spin.
Many aspects of spin and the zbw in the Pauli theory have already been discussed in Ref.
9. In the Schroedinger approximation the factor U0 is neglected so ψP reduces to the
Schroedinger wave function

ψS = ρ
1
2 e−i(ϕ/h̄) . (5.12)

It follows from this derivation of the Schroedinger wave function that just as in the Dirac
theory, the phase ϕ/h̄ describes the zbw, and ∂µϕ describes the zbw energy and momentum.
We see now the physical significance of the complex that phase factor e−i(ϕ/h̄) is kinematical
rather than logical or statistical as so often claimed.

The zbw interpretation explains much more than the electron spin and magnetic moment.
That is especially clear in the Schroedinger theory where spin is ignored but the complex
phase factor is essential. Stationary state solutions of both the Schroedinger and Dirac
equations reveal an important property of the zbw. The singlevaluedness of the wave func-
tion implies that the orbital frequency is a harmonic of the zbw frequency shift in stationary
states. This opens the possibility of zbw resonance as a fundamental explanatory principle
in quantum mechanics.11,37,38 The Pauli principle may be a consequence of zbw resonance
between electron pairs, since it is linked to stationary state conditions. Diffraction may be
explained as zbw resonant momentum exchange. Thus we have the possibility, or better, the
challenge of finding zbw explanations for all the familiar phenomena of quantum mechanics,
including barrier penetration and the Aharonov-Bohm effect.

Further support for the zbw interpretation comes from recent successes of semiclassical
mechanics in molecular dynamics and electronic structure,36 often surpassing the results
from standard quantum mechanical methods. Such success may be surprising from the
conventional view of quantum mechanics, but from the zbw perspective, the semiclassical
approach of imposing quantum conditions on classical dynamics is just of way of meeting
the conditions for zbw resonances. This constitutes further evidence for the possibility
that standard quantum mechanics is dealing with ensembles of particle orbits with zbw
periodicity.

Quantum mechanics is characterized by phase coherence over distances very much larger
than an electron Compton wavelength defining the dimensions of the zbw. By what causal
mechanism might zbw coherence be established over such large distances? A tantalizing
possibility arises by interpreting the circular zbw orbit literally as the orbit of a point charge.
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For that implies that the electron must be the source of a (nonradiating) electromagnetic
field which fluctuates with the zbw frequency. The observed Coulomb and magnetic dipole
fields of the electron are averages of this field over times much longer than a zbw period.
The zbw fluctuations are much too rapid to observe directly, though perhaps they have been
observed indirectly all along in quantum coherence phenomena. This rapidly fluctuating
field is a prime candidate for Bohm’s Quantum Force. A speculative analysis of its quantum
implications is given in Refs. 11, 37 and 38.

Considering how well the zbw interpretation fits the Dirac theory, we can regard the
Dirac theory and all its successes as evidence that the zbw is a real physical phenomena.
The Dirac theory, then, does not explain the zbw, it simply tells us that the zbw exists and
describes some of its properties. To explain the zbw we must go beyond the Dirac theory
to discover new physical mechanisms such as the fluctuating “Quantum Force” proposed
in the preceding paragraph. However, the Dirac theory is not without clues as to what
to look for.39 One important clue concerns the origin of electron mass. The very form of
the important equation (4.6) suggests that the electron’s mass may be a consequence of
magnetic self-interaction, as expressed by writing

m = S ·Ω = µ ·BS , (5.13)

where BS is the self-magnetic field presumed to be the origin of the free particle Ω. This is
a suggestive starting point for a zbw approach to quantum electrodynamics, but that must
be deferred to another day.

6. ELECTROWEAK INTERACTIONS.

The STA formulation of the Dirac theory has indubitable implications for the Weinberg-
Salam (W-S) theory of electroweak interactions. The W-S theory generalizes the electro-
magnetic (E-M) gauge group to the electroweak (E-W) gauge group SU(2)×U(1). However,
this was done without realizing that the imaginary unit i which generates E-M gauge trans-
formations in the Dirac theory is a spacelike bivector identified with the electron spin.
This fact forces a strong geometrical constraint on the W-S theory: Since i has a space-
time interpretation, the generators of the larger E-W group which include it must have
related spacetime interpretations. Remarkably, this constraint can be easily satisfied in the
following way:

The Dirac current ψγ0ψ̃ is a timelike vector field, so only 4 parameters are needed to
specify it. However, 8 parameters are needed to specify the wave function ψ uniquely.
Therefore, the Dirac current is invariant under a 4-parameter group of gauge transforma-
tions on the wave function:

ψ → ψG , (6.1)

where G = G(x) is an even multivector satisfying

Gγ0G̃ = γ0 . (6.2)

It follows that
G = Ueiλ , (6.3)
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where UŨ = 1. This exhibits explicitly the SU(2)×U(1) structure of the gauge group.
Thus, the invariance group of the Dirac current can be identified with the E-W gauge group.
The subgroup which leaves the spin density ρŝ = ψγ3ψ̃ invariant is characterized by the
additional condition

Gγ3G̃ = γ3 . (6.4)

The E-M gauge transformations belong to this subgroup. Note also that the U(1) factor in
(6.3) is a duality factor exactly like the one parametrized by β/2 in the invariant decom-
position of the Dirac wave function (2.17). Thus, it may be that the fundamental physical
role of β is to serve as a gauge parameter in electroweak theory.

Of course, the Dirac equation is not invariant under the entire E-W gauge group {G}, but
it is easily generalized to one that is by introducing a suitable “gauge invariant derivative”
in the standard way. That has been done in Ref. 10, where the Weinberg-Salam model
is completely reformulated in terms of STA with the E-W gauge group defined as above.
This opens up possibilities for integrating the zitterbewegung idea with electroweak theory.
Evidently that would obviate the need for including Higgs bosons in the theory, since the
zitterbewegung provides an alternative mechanism to account for the electron mass.

7. CONCLUSIONS.

The objective of this work has been to understand what makes quantum mechanics so
successful by analyzing the Dirac theory. The analysis has been developed progressively on
three levels: reformulation, reinterpretation and modification. Let us take stock, now, to
see how far we have progressed toward the objective.

A. REFORMULATION. We have seen that reformulation of the Dirac theory in terms
of STA eliminated superfluous degrees of freedom in the Dirac algebra and reveals a hidden
geometrical structure in the Dirac equation and its solutions. The main results are:

(1.) The Dirac wave function has the invariant decomposition

ψ = (ρeiβ)
1
2 R . (7.1)

(2.) The factor ih̄ in the Dirac equation is a spacelike bivector related to the spin by

S = 1
2R(ih̄)R̃ . (7.2)

(3.) The electron energy-momentum pν is related to the spin by

pν = Ων · S − eAν , (7.3)

where ∂νR = 1
2ΩνR.

These results are mathematical facts inherent in the original Dirac theory. By making
the geometric structure of the theory explicit, however, they suggest a new, more coherent
and complete interpretation of the theory.
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B. REINTERPRETATION. The new zitterbewegung interpretation is imposed on the
Dirac theory simply by identifying the electron velocity with the lightlike vector u = R(γ0−
γ2)R̃ . It follows that the spin S in (7.2) is the angular momentum of the zitterbewegung,
and (7.3) attributes energy-momentum to this motion. The general helical character of the
zitterbewegung is completely determined by the Dirac equation without further assumption.

This approach has the great formal advantage of providing the entire rotor R with a
kinematical interpretation. In particular, the complex phase factor is interpreted as a
direct representation of the zitterbewegung itself. Thus, a physical explanation is given for
the appearance of complex numbers in quantum mechanics. Moreover, the zitterbewegung
interpretation of the phase factor carries over to Schroedinger theory and so suggests a
reinterpretation of quantum mechanics generally. This has the great advantage over variants
of the Copenhagen interpretation of being grounded in the Dirac theory.

Above all, the zitterbewegung interpretation presents us with an array of challenges.
First, there is a theoretical challenge to see how far we can go in providing zitterbewegung
interpretations for the standard results of quantum mechanics and even quantum electro-
dynamics. Second, there is a challenge to probe the zitterbewegung experimentally to see
if it can be established as a “literally real” phenomenon. Finally, there is a challenge to see
if the zitterbewegung can lead us beyond present quantum mechanics to deeper physical
insights.

C. MODIFICATIONS. If indeed the zitterbewegung is physically real it is probably a
consequence of electromagnetic or electroweak self-interaction, and it may be the source of
an electromagnetic field which fluctuates with the zitterbewegung frequency. Thus it opens
up the possibility of a new approach to the self-interaction problem and actually explaining
the phenomenon of quantization rather than assuming it. Of course, such possibilities
cannot be explored theoretically without going beyond the Dirac theory.
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APPENDIX A: TRANSFORMATIONS AND INVARIANTS.

This Appendix formulates general transformation laws for fields on spacetime and applies
the results to establish Poincaré invariance of the field equations. The transformation law
for spinor fields is shown to rest on a convention which can be chosen to make it identical
with the transformation law for tensor fields.

Let f be a transformation of a 4-dimensional region (or manifold) R = {x} onto a region
R′ = {x′} in a spacetime; the pointwise transformation is thus

f : x→ x′ = f(x) . (A.1)

A transformation is understood to be a differentiable invertible mapping. It induces a
transformation f of a vector field a = a(x) on R into a vector field a′ = a′(x′) on R′
defined by

f : a→ a′ = fa ≡ a ·5f , (A.2)

where the derivative is evaluated at x = f−1(x′). A parenthesis has been dropped in writing
fa in recognition that f is a linear operator on tangent vectors.

The transformation f is called the differential of f . It has a natural extension from vector
fields to arbitrary multivector fields. Thus, for vector fields a1, a2, . . . ak, the differential
of the k-vector field a1 ∧ a2 ∧ · · · ∧ ak is defined by

f(a1 ∧ a2 ∧ · · · ∧ ak) = (fa1) ∧ (fa2) ∧ · · · ∧ (fak) . (A.3)

By linearity this determines the differential for any multivector field M = M(x):

fM =
4∑
k=0

f(M)(k) , (A.4)

where it is understood that

(fM)(0) = (M)(0) , (A.5)

which is to say that every scalar field is an invariant of f and hence of f . An extensive
treatment of the differential on differentiable manifolds is given in Ref. 15.

The differential of the unit pseudoscalar is given by

fi = idet f , (A.6)

where

det f = i−1 fi = −ifi (A.7)

is the Jacobian of f .
As an application of general interest, let us calculate the form of the differential for an

arbitrary infinitesimal transformation

f(x) = x+ ε(x) . (A.8)
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It is understood that, for any unit vector â, ε · â is a small quantity. This is equivalent
to the condition that ε2 is small, except when ε is a null vector. For a vector field the
corresponding induced transformation is

fa = a ·5(x+ ε) = a+ a ·5ε . (A.9)

Neglecting second order terms, therefore, for a bivector field a ∧ b, we have

f(a ∧ b) = a ∧ b+ (a ·5ε) ∧ b+ a ∧ (b ·5ε) = a ∧ b+ [ (a ∧ b) ·5 ] ∧ ε . (A.10)

This result generalizes easily to the differential for an arbitrary multivector field:

fM = M + (M ·5) ∧ ε , (A.11)

where

M ·5 =

4∑
k=1

(M)(k) ·5 . (A.12)

Note that k = 0 is not included in the sum since the scalar part of M is invariant.
As a significant example, we apply (A.11) to the pseudoscalar i and obtain

fi = i+ (i ·5) ∧ ε = i(1 +5 · ε) . (A.13)

This gives us immediately the useful expression

det f = 1 +5 · ε (A.14)

for the Jacobian of f .
Equation (A.11) determines a new function

M ′(x′) = M ′(x+ ε) = M + [M(x) ·5 ] ∧ ε .

To exhibit the ε-dependence of the argument explicitly, we make a Taylor expansion of the
argument and keep only first order terms to get

M ′(x) = M(x)− ε ·5M(x) + [M(x) ·5 ] ∧ ε . (A.15)

This tells us explicitly how the infinitesimal transformation changes the field M at a des-
ignated point x.

Now let us turn to the question of Poincaré invariance of the equations of physics. The
Poincaré group is the group of transformations on spacetime which leave invariant the
“interval” (x2 − x1)

2 between every pair of spacetime points x1 and x2. We are concerned
here only with the Restricted Poincaré Group for physical reasons discussed below. This
is the subgroup of Poincaré transformations continuously connected to the identity. Every
such transformation is the composite of a Lorentz rotation and a translation, so, according
to (1.24), it can be written in the canonical form

f(x) = RxR̃ + c , (A.16)
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where c is a constant vector and R is a constant rotor with RR̃ = 1. From (A.2) we find
immediately the differential

a′ = fa = RaR̃ . (A.17)

For the product of two vector fields this gives the simple result

a′b′ = (fa)(fb) = RabR̃ . (A.18)

By virtue of (1.3) this can be decomposed into a scalar part

a′ · b′ = a · b (A.19)

and a bivector part
a′ ∧ b′ = f(a ∧ b) = R(a ∧ b)R̃ . (A.20)

According to (A.3), the outer product is an invariant of the differential for any transforma-
tion. The inner product and the geometric product are not generally invariant; however,
(A.19) and (A.18) show that they are in the present case. It follows that for an arbitrary
multivector field M the transformation law is simply

M ′ = fM = RMR̃ . (A.21)

From this the Poincaré invariance of the basic equations of physics is easily established.
For example, for Maxwell’s equation (1.28) we have

5′F ′ = (f5)(fF ) = (R5R̃)(RFR̃) = R5FR̃ = RJR̃ = J ′ . (A.22)

Thus, the relation of field F to current J is a Poincaré invariant.
The physical significance of Poincaré invariance deserves some comment, since the matter

is frequently muddled in the literature. Poincaré transformations are commonly interpreted
as relations among different inertial reference systems or observers. That is clearly not the
correct interpretation here, for no reference system has even been mentioned either in
the formulation of Maxwell’s equation or of its induced transformation (A.22). Indeed,
Maxwell’s equation 5F = J is manifestly independent of any coordinate system, so no
argument at all is needed to establish its observer independence. The Poincaré invariance
expressed by (A.22) should be interpreted as an equivalence of spacetime points rather than
an equivalence of observers. It describes a physical property of the Minkowski model of
spacetime. Translation invariance implies that spacetime is homogeneous in sense that the
same laws of physics are the same at every spacetime point. Similarly, Lorentz rotation
invariance implies that spacetime is isotropic in the sense that the laws of physics do not
favor any particular timelike or spacelike directions. Poincaré invariance thus provides the
theoretical basis for comparing the results of physical experiments and observations made
at different times and places. It is the formal assertion that the laws of physics are the
same everywherewhen.

The Poincaré invariance of the Dirac equation (2.5) can be established in the same way
as that of Maxwell’s equation. Thus,

5′ψ′i′h̄− eAψ′ = (R5R̃)(RψR̃)(Ri′R̃)h̄− e(RAR̃)(RψR̃)

= R(5ψih̄− eAψ)R̃ = R(mψγ0)R̃ = mψ′γ′0 . (A.23)
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Note that the transformation law for the spinor wave function ψ has been taken to be

ψ′ = RψR̃ (A.24)

in accordance with (A.21). However, the usual transformation law for a Dirac spinor is

ψ′ = Rψ (A.25)

or, in the conventional matrix representation (2.2),

Ψ′ = RΨ . (A.26)

Nevertheless, the transformation laws (A.24) and (A.25) are physically equivalent, because
all observables are bilinear functions of the wave function. Indeed, as established by (2.7)

through (2.11), the factor R̃ on the right of (A.24) can be transformed away at will. The
choice between the transformation laws (A.24) and (A.25) is therefore a matter of conven-
tion. Though (A.25) is simpler, (A.24) has the advantage of conformity with (A.21) and
hence the more general transformation law (A.4).

In the conventional formulation,21 spinors are defined by the transformation law (A.26),
so the possibility of (A.24) does not arise. On the other hand, transformations are not
employed to define spinors in the manifestly invariant STA formulation. Rather, the spinor
ψ itself represents a transformation as defined by (2.19).

It is of interest to consider briefly the infinitesimal Poincaré transformations, since they
play such a prominent role in the conventional approach to relativistic quantum theory.
For an infinitesimal translation, we take R = 1 and ε = c in (A.16), so (A.15) reduces to

M ′(x) = M(x− c) = (1− c ·5)M(x) . (A.27)

This applies equally to the electromagnetic field and the Dirac wave function. Writing
c ·5 = cµ∂µ, we recognized the ∂µ as generators of translations. It is noted that the ∂µ can
be made hermitian by the artifice of introducing a unit imaginary factor i′, so the translation
operators in quantum mechanics are usually defined to be i′∂µ. These operators are then
identified with momentum operators. However, our analysis of the Dirac theory in Section
3 reveals that the success of this formal procedure should be attributed to the physical
interpretation of the Dirac wave function rather than to a general physical significance of
hermitian operators.

For an infinitesimal Lorentz rotation, we take c = 0 in (A.16) and write

R = e
1
2B ≈ 1 + 1

2B , (A.28)

where B is an infinitesimal bivector. Then (A.16) reduces to

x′ = (1 + 1
2B)x(1− 1

2B) ≈ x+B · x . (A.29)

Hence, ε = B · x in (A.15) and/or (A.30) in (A.21) gives

M ′(x) = [ 1−B · (x ∧5) +B× ]M(x) , (A.30)
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where B×M is the commutator product. Alternatively, for a spinor ψ subject to the one-
sided transformation law (A.27), the result is

ψ′(x) = [ 1−B · (x ∧5) + 1
2B]ψ(x) . (A.31)

This is expressed in a more conventional form by expanding B with respect to a basis to
get

ψ′(x) = (1 + 1
2B

µνJµν)ψ(x) , (A.32)

where the

Jµν = (γµ ∧ γν) · (x ∧5) + 1
2γµ ∧ γν = xµ∂ν − xν∂µ + 1

2γµ ∧ γν (A.33)

are the usual “angular momentum operators” for a Dirac particle. In a similar way, angular
momentum operators for the electromagnetic field can be read off (A.30).

APPENDIX B: LAGRANGIAN FORMULATION

This appendix is concerned with the Lagrangian formulation of the Dirac theory. The
Lagrange approach has the advantages of ensuring consistency among the various field
equations and directly relating them to conservation laws. Though this approach to the
Dirac theory has been discussed many times in the literature, the STA formulation is
sufficiently novel to merit one more version. A powerful generalization of the present
method has since been presented in Ref. 44.

Let L = L(x) be the Lagrangian for some field on spacetime. The associated action
integral over any region R is

A =

∫
R
L(x) | d4x | , (B.1)

where the oriented “volume element” for the region is the pseudoscalar

d4x = d1x ∧ d2x ∧ d3x ∧ d4x = i | d4x | . (B.2)

A general variation of the action involves both a change in the functional form of L and an
infinitesimal displacement of R producing a new action

A′ = A+ δA =

∫
R′
L′(x′) | d4x′ | . (B.3)

For an infinitesimal displacement x→ x′ = x+ ε(x), (A.14) gives us

| d4x′ | = (1 +5 · ε) | d4x | . (B.4)

Hence, writing L′ = L+ δL, to first order we have

δA =

∫
R′

(δL+ L5 · ε) | d4x | . (B.5)
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Now for a given L, both field equations and conservation laws can be derived by requiring
the invariance condition δA = 0 subject to various constraints.

For the Dirac electron, we adopt the (nonunique) Lagrangian

L = 〈 h̄(5ψ)iγ3ψ̃ − eAψγ0ψ̃ −mψψ̃ 〉 , (B.6)

where 〈 . . . 〉 = (. . .)(0) means “scalar part.” We derive the Dirac equation by requiring
δA = 0 for an arbitrary variation δψ(x) = ψ′(x) − ψ(x) in the functional form of the
wave function which vanishes on the boundary of R. In this case the boundary is fixed
and ε = 0 in (B.5). The derivation employs the scalar-part properties 〈 M̃ 〉 = 〈M 〉 and

〈MN 〉 = 〈NM 〉. Thus, using (δψ)˜ = δψ̃ the variation of the last term in (A.6) can be
put in the form

δ〈ψψ̃ 〉 = 〈 (δψ)ψ̃ 〉+ 〈ψδψ̃ 〉 = 2〈ψδψ̃ 〉 .

Similarly, the variation of the second term in (B.6) involves

〈A(δψ)γ0ψ̃ 〉 = 〈ψγ0(δψ̃)A 〉 = 〈Aψγ0δψ̃ 〉 .

To evaluate the variation of the first term in (B.6), we use δ(5ψ) = 5(δψ) and

〈 (5δψ)iγ3ψ̃ 〉 = 〈5(δψiγ3ψ̃) 〉 − 〈 δψiγ3(5ψ)˜ 〉
= 〈 (5ψ)iγ3δψ̃ 〉+5 · (δψiγ3ψ̃)(1) . (B.7)

The last term here does not contribute to δA in (B.5), because δψ vanishes on the boundary.
Thus, we arrive at

δL = 2〈 (h̄5ψiγ3 − eAψγ0 −mψ)δψ̃ 〉 . (B.8)

This vanishes for all values of the arbitrary even multivector δψ̃ only if the Dirac equation
(2.5) is satisfied.

CONSERVATION LAWS

Conservation Laws are derived by requiring invariance of the action under infinitesimal
displacements preserving the field equations. For performing the calculation it is convenient
to decompose δψ into a part

δ ∗ψ = ψ′(x)− ψ(x) (B.9)

due to a change in the value of ψ and a part due to the shift ε = x′ − x in the argument.
This is easily done by writing

δψ = ψ′(x′)− ψ(x) = ψ′(x′)− ψ(x′) + ψ(x′)− ψ(x) .

To first order in small quantities δ ∗ψ(x′) = δ ∗ψ(x) and we have

δψ = δ ∗ψ(x) + ε ·5ψ(x) . (B.10)
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Applying the same argument to the integrand of (B.5), we have

δL+ L5 · ε = δ ∗L+ ε ·5L+ L5 · ε .

Thus, δA = 0 for any choice of the region R only if

δ ∗L+5 · (εL) = 0 . (B.11)

This is a Conservation Law for specified ε.
To evaluate (B.11) for the electron Lagrangian (B.6), we note that δ ∗L will have the

same form as (B.8) except that the perfect divergence term in (B.7) must be included and
an additional term due to δ ∗A must be added. However, since we require that the Dirac
equation be satisfied, the result is simply

δ ∗L = 5 · (h̄δ ∗ψiγ3ψ̃)(1) − e〈 δ∗Aψγ0ψ̃ 〉 . (B.12)

Inserting this into (B.11), we can express the general conservation law in the form

5 ·
[
h̄(δψ − ε ·5ψ)iγ3ψ̃ + εL

]
(1)

= e〈 (δA− ε ·5A)ψγ0ψ̃ 〉 . (B.13)

It will be helpful to reformulate this in terms of the energy-momentum operators pµ. From
the definition (3.21) we have

ε · pψ = ε ·5ψih̄γ3γ0 − e ε ·Aψ . (B.14)

So from the definition of the energy-momentum tensor Tµ in (3.24) or Table II, we obtain

ε · Tµ = 〈 γµ(ε · pψ)γ0ψ̃ 〉 . (B.15)

Consequently,

∂µ(ε · Tµ) = ∂µ〈 γµ(ε ·5ψ)ih̄γ3ψ̃ 〉 − ∂µ(eε ·A〈 γµψγ0ψ̃ 〉) , (B.16)

which relates one term on the left of (B.13) to Tµ. The Lagrangian (B.6) can also be
expressed in terms of Tµ, with the result

L = Tµµ − 〈mψψ̃ 〉 . (B.17)

But we have already observed in (3.31) that this vanishes in consequence of the Dirac
equation. Finally, we note that the last term in (B.16) can be written

∂µ(ε ·AJµ) = J ·5(ε ·A) , (B.18)

where J = eψγ0ψ̃ is the Dirac charge current. Hence, with the help of the identity

ε · F · J = (ε ·5A) · J − ε · (J ·5A) , (B.19)
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where F = 5∧A, we can put (B.13) in the form

∂µ(ε · Tµ − 〈 γµδψih̄γ3ψ̃ 〉) = ε · F · J −A · (J ·5ε)− J · (δA) . (B.20)

This is the desired final form of the general conservation law. Now it is a simple matter to
assess the implications of requiring Poincaré invariance.

A. Translation Invariance. For an infinitesimal translation ε is constant, δψ = 0, and
δA = 0. Hence, (B.20) reduces to

ε · (∂µTµ) = ε · (F · J) . (B.21)

Since ε is arbitrary, this implies the energy-momentum conservation law (3.27). Thus,
energy-momentum conservation is a consequence of the homogeneity of spacetime.

B. Lorentz Invariance. For an infinitesimal Lorentz rotation, ε = B · x by (A.29), δA =
B×A = B ·A by (A.30), and δψ = (1/2)Bψ by (A.31). In consequence, note the following:

A · [J ·5(B · x) ] = (B · J) ·A = −J · (B ·A) = −J · (δA) ,

ε · Tµ = (B · x) · Tµ = B · (x ∧ Tµ) ,

〈 γµδψiγ3h̄ψ̃ 〉 = 〈Bi(1
2 h̄ψγ3ψ̃)γµ 〉 = B · (ρSµ) ,

where Sµ = i(s∧γµ) is the spin angular momentum tensor of (3.33). Inserting these results
into (B.20), we obtain

B · [ ∂µ(Tµ ∧ x+ ρSµ) ] = B · [ (F · J) ∧ x ] . (B.22)

SinceB is an arbitrary bivector, this implies the angular momentum conservation law (3.34).
Thus, angular momentum conservation is a consequence of the isotropy of spacetime.

For the sake of completeness, we note that a complete Lagrangian for electron and E-M
fields together is obtained by adding to the Dirac Lagrangian (B.6) the term 1

2 〈F 2 〉 =

− 1
2 〈FF̃ 〉, where F = 5∧A. The electromagnetic part of the Lagrangian is then

LEM = 1
2 〈F

2 〉 −A · J . (B.23)

The signs have been chosen so that the interaction term agrees with (B.6) for J = eψγ0ψ̃.
From this the E-M field equation can be derived by the general variational principle. Thus,
we note that

δ[ 1
2 〈F

2 〉 ] = 〈F5δA 〉 = δA · (5F ) + ∂µ〈FγµδA 〉 . (B.24)

The last term vanishes for δA = 0 on the boundary, so we have

δLEM = δA · (5F − J) = 0 .

Since δA is arbitrary, this implies Maxwell’s equation 5F = J .
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Conservation laws for the electromagnetic field can be obtained by inserting (B.23) into
the general Conservation Law (B.11). Thus, using (B.24) with δ∗A = δA − ε ·5A and
δ∗J = δJ − ε ·5J , we obtain

∂µ
[
〈Fγµε ·5A 〉 − 1

2γ
µ · ε〈F 2 〉 − 〈FγµδA 〉

]
= −J · (ε ·5A)−A · (δJ)− (J ·A)5 · ε . (B.25)

Let us define the canonical energy-momentum tensor Tµc = Tc(γ
µ) by

Tc(n) ≡ −1
2FnF − n · F̀ · 5̀À

= 5̀〈FnÀ 〉 − 1
2n〈F

2 〉+A〈n5F 〉 , (B.26)

where the reverse accents serve to indicate which functions are differentiated by5. Inserting
this into (B.25), we get the Conservation Law in the form

∂µ[ ε · Tµc − 〈FγµδA 〉 ] = ε · (J · F ) +A · (J ·5ε)−A · (δJ)− J ·A5 · ε . (B.27)

As before, translation invariance yields the energy-momentum conservation law

∂µT
µ
c = J · F = −F · J . (B.28)

And Lorentz invariance yields the angular momentum conservation law

∂µ[T
µ
c ∧ x+ Sµc ] = (J · F ) ∧ x , (B.29)

where the E-M spin tensor Sµc = Sc(γ
µ) is given by

Sc(n) = (F · n) ∧A . (B.30)

Of course, both (B.28) and (B.29) can be obtained by direct differentiation of (B.26). Also
note that when they are added to the corresponding equations (3.27) and (3.34) for the
electron, the internal forces and torques cancel.
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