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1 Introduction

My purpose in this chapter is to introduce you to a powerful new algebraic model
for Euclidean space with all sorts of applications to computer-aided geometry,
robotics, computer vision and the like. A detailed description and analysis of the
model is soon to be published elsewhere [1], so I can concentrate on highlights
here, although with a slightly different formulation that I find more convenient
for applications. Also, I can assume that this audience is familiar with Geometric
Algebra, so we can proceed rapidly without belaboring the basics.

2 Minkowski Algebra

Let Rp,q = G(Rp,q) denote the Geometric Algebra generated by a vector space
Rp,q with non-degenerate signature (p, q), where p is the dimension of its largest
subspace of vectors with positive signature. The signature is said to be Euclidean
if q = 0 and Minkowski if q = 1. We will be concerned with the Minkowski
algebra Rn+1,1 and its Euclidean subalgebra Rn determined by a designated
unit bivector (or blade) E.

First we consider the Minkowski plane R1,1 and the Minkowski algebra
R1,1 = G(R1,1) that it generates. It is most convenient to introduce a null
basis {e, e∗} for the plane that satisfies

e2 = e2
∗ = 0, e · e∗ = 1. (1)

This generates a basis {1, e, e∗, E} for R1,1, where

E = e ∧ e∗ =⇒ E2 = 1 (2)

defines a unit pseudoscalar for the plane. It is of some interest to remark that
the “∗” notation has been adopted to indicate that e∗ is “dual” to e in the
sense of linear forms. That simplifies comparison of alternative mathematical
representations.

Using the expansion ee∗ = e · e∗ + e ∧ e∗, we can express the basis relations
in the convenient form

ee∗ = 1 + E, (3)

whence
e∗e = 1− E = 1 + E† = (ee∗)†. (4)
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We can also derive the “absorption property” for null vectors:

Ee = −eE = e, e∗E = −Ee∗ = e∗. (5)

The above relations suffice for all our dealings with the E-plane. However, it
is of some interest to compare the null basis with an orthonormal basis defined
by

e± ≡
1√
2
(λe± λ−1e∗), λ 6= 0. (6)

We note that

e2
± = ±1, e+ · e− = 0, E = e ∧ e∗ = e+ ∧ e− = e+e− (7)

The two sets of base vectors are in Fig. 1 for λ = 1. As λ varies in eqn. (6), the
directions of e± vary, but the orthonormality relations (7) remain fixed. On the
other hand, a rescaling of the of the null vectors: {e, e∗} → {λe, λ−1e∗} does
not affect any of the relations (1) to (5). Thus, we see that our definition of
the null basis fixes directions but not scale, whereas the orthonormal basis has
fixed scale but arbitrary direction. It is this difference that makes the null basis
more suitable for our purposes.

3 Conformal Split

The conformal split was introduced in [2] to relate a Minkowski algebra to a
maximal Euclidean subalgebra. The split can be defined in two different ways:
additively and multiplicatively.

The additive split is defined as a direct sum:

Rn+1,1 = R/ n ⊕R1,1. (8)

For those who would like to see this expressed in terms of a basis, we introduce an
orthonormal basis {ek| ej · ek = δjk; j, k = 1, 2, . . . , n} for the Euclidean vector
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space R/ n and we note that the orthogonality conditions e∗ · ek = e · ek = 0 are
equivalent to the condition that the null vectors anticommute with the ek, that
is,

eke = −eek, eke∗ = −e∗ek. (9)

Alternatively, the multiplicative split is defined as a direct product:

Rn+1,1 = Rn ⊗R1,1. (10)

Here Rn is actually a space of trivectors with a common bivector factor E. It
is related to the vector space R/ n by

Rn = R/ n
E ∼= R/ n (11)

and it generates the Euclidean algebra Rn = G(Rn). It has the basis

{ek = ekE = Eek} = trivectors in R3
n+1,1. (12)

We still have the orthonormality conditions ej · ek = ej · ek = δjk. However, in
contrast to the ek, the ek commute with the null vectors, that is,

eke = eek, eke∗ = e∗ek. (13)

This is one very good reason for preferring the multiplicative split over the
additive split. The latter was employed in [1], but we will stick with the former.

The multiplicative split R4,1 = R3 ⊗ R1,1 has significant applications to
computational geometry, robotics, computer vision, crytallography and molecu-
lar geometry. At a more sophisticated level, the split R4,2 = R3,1⊗R1,1 defines
a conformal split of spacetime with potential applications to twistor theory and
cosmological models in gauge gravity.

4 Models of Euclidean Space

We can model En as a set of points with algebraic properties. A standard way to
do that is to identify each Euclidean point with a vector x in Rn, as expressed
by the isomorphism

En ∼= Rn . (14)

We call this the inhomogeneous model of En, because the origin 0 is a dis-
tinguished point in Rn, although all points in En are supposed to be identical.

To eliminate that drawback, we represent points in En by vectors x ∈ Rn+1,1

and, to eliminate the extra degrees of freedom, we suppose that each point lies
in the null cone

Nn+1 = {x |x2 = 0} (15)

and on the hyperplane

Pn+1(e, e∗) = {x | e · x = 1}, (16)
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where
e · (x− e∗) = 0 ⇐⇒ e · x = 1 (17)

tells us that the plane passes through the point e∗. The intersection of these
two surfaces is the horosphere:

Nn+1
e = Nn+1 ∩ Pn+1(e, e∗). (18)

Thus, we have the isomorphisms

Rn ∼= En ∼= Nn+1
e . (19)

We call the horosphere (Fig. 2) the homogeneous model of En. It was
first constructed by F. A. Wachter (1792–1817), but, as will become apparent,
it is only by formulating it in terms of geometric algebra that it becomes a
practical tool for computational geometry. To prove the isomorphism (19), we
employ a conformal split to relate each homogeneous point x ∈ N n+1

e to a
unique inhomogeneous point x = x ∧ E ∈ Rn.

The conformal split proceeds as follows:

x = xE2 = (x ∧ E + x · E)E,

and the constraints on x imply

(x · E)E = (x · (e ∧ e∗))E = (1
2 x2e + e∗)E = −1

2x
2e + e∗.

Whence we obtain an explicit expression for the conformal split:

x = (x + 1
2x

2e + e∗)E = xE − 1
2 x2e + e∗ . (20)

From this we calculate

x · y = 〈xEEy 〉 = x · y − 1
2 (x2 + y2) e · e∗.
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Therefore, the inner product

x · y = −1
2 (x− y)2 = − 1

2 (Euclidean distance)2 (21)

specifies an intrinsic relation among points in En.
Setting x = 0 in (20), we see that e∗ represents the origin in Rn. From

x

x · e∗
=
−2
x2

x2

(
1
x

+ 1
2e +

1
x2

e∗

)
E −−−−−→

x2→∞ e,

we conclude that e represents a point at infinity.
To facilitate work with the homogenous model, we define I as the unit pseu-

doscalar for Rn+1,1, and note the properties

| I |2 = −II† = 1, I† = −I−1, (22)

and I† = I for n = 2, 3. The dual of a multivector A in Rn+1,1 is defined by

Ã ≡ AI−1 = −AI† (23)

Therefore, Ẽ = EI−1 is the pseudoscalar for R/ n.

5 Lines and Planes

Grassmann sought to identify the outer product a ∧ b with the line determined
by two points a and b [3]. However, he succeeded in doing that only in projective
geometry [4]. The homogeneous model enables us to see why he failed to do it
in Euclidean geometry: In the Euclidean case, it takes three points to determine
a line, and one of them is the point e at infinity. Grassmann could not discover
that because he did not have null vectors in his algebraic system.

With the conformal split, we can show that a∧ b∧ e can be interpreted as a
line segment in En or line through points a, b, e. The length of the segment is
given by its square:

(a ∧ b ∧ e)2 = (a− b)2 = −2a · b = (length)2. (24)

Similarly, the outer product a∧ b∧ c∧ e represents a plane segment or plane
in En, and the area of the segment is given by its square:

(a ∧ b ∧ c ∧ e)2 =

∣∣∣∣∣∣∣
0 1 1 1
1 0 a · b a · c
1 b · a 0 b · c
1 c · a c · b 0

∣∣∣∣∣∣∣ = 4(area)2. (25)

This is known, in a slightly different form, as the Cayley-Menger determinant.
Cayley discovered it in 1841 and nearly a century later Menger [5] used it in a
formulation of Euclidean geometry with interpoint distance as primitive. Dress
and Havel [6] recognized its relation to Geometric Algebra.
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Using eqn. (20), we can expand the geometric product of points a and b:

ab = (aE)(Eb) = (a + 1
2 a2e + e∗)(b− 1

2 b2e− e∗)
= − 1

2 (a− b)2 + a ∧ b + 1
2 (a2b− b2a)e + (b− a)e∗ − 1

2 (a2 − b2)E .

(26)
In expanding (26) we have used the relation ab = a ·b+a∧b, which applies

because a and b can be interpreted as vectors in Rn, though they are trivectors
in Rn+1,1. In other words, we have regraded the elements of the subalgebra Rn

to conform to our interpretation of Rn as an inhomogeneous model of En. The
use of boldface type should avoid confusion between the two different versions
of outer product: a ∧ b and a ∧ b.

The first term on the right side of (26) is recognized as the inner product
a · b, while the remaining terms make up a ∧ b. The profusion of terms in (26)
is indicative of the extensive information inherent in the simple product ab. It
is similar to the complexity of a spacetime split in physics [7].

From (26) we derive the projective split of a line (or line segment) through
points a, b, e:

e ∧ a ∧ b = a ∧ be + (b− a). (27)

The coefficients on the right side of (27) will be recognized as the Plücker co-
ordinates for a line with tangent b − a and moment a ∧ (b − a) = a ∧ b, as
depicted in Fig. 3. Similarly, the projective split for a plane (or plane segment)
is given by

e ∧ a ∧ b ∧ c = −a ∧ b ∧ ce + (b− a) ∧ (c− a)E, (28)

where the coefficients are Plücker coordinates for a plane, as depicted in Fig. 4.
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6 Spheres and Hyperplanes

A sphere in En with radius ρ and center p is represented by a vector s in Rn+1,1

with positive signature, where

s2

(s · e)2 = ρ2 , p =
s

s · e −
1
2ρ2e. (29)

6



It is readily verified that p2 = 0, so p is a homogeneous point. The constraint
s · e = 1 determines s uniquely and simplifies (29) to

s2 = ρ2 > 0, p = s− 1
2ρ2e. (30)

As depicted in Fig. 5, the equation for the sphere is

x · s = 0. (31)

This is the equation for a hyperplane through the origin in Rn+1,1, although
only the vectors satisfying x2 = 0 count as homogeneous points.

The conformal split gives us

s = pE + 1
2 (ρ2 − p2)e + e∗. (32)

This helps us ascertain that the equation for a circle can be expressed in the
alternative forms:

x · p = −1
2ρ2 =⇒ ρ2 = (x− p)2. (33)
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Like a sphere, a hyperplane in En can be represented by a single vector n
of positive signature. The vector can be normalized to unity, but it necessarily
satisfies

n · e = 0. (34)

As depicted in Fig. 6, its conformal split has the form

n = nE − δe, (35)

where n2 = n2 = 1.

The homogeneous model of En represents all spheres and hyperplanes in
Rn as (n + 1)-dim subspaces of Rn+1,1 determined by their normal vectors, as
expressed

{x |x · s = 0 , s2 > 0 , s · e ≥ 0 , x2 = 0; x, s ∈ Rn+1,1} . (36)

For a sphere the normal s satisfies e · s > 0, but for a hyperplane it satisfies
e · s = 0. Thus, a hyperplane is a sphere through the point e = ∞ .
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A sphere determined by n + 1 points a0, a1, a2, . . . an is represented by the
tangent form

s̃ ≡ a0 ∧ a1 ∧ a2 ∧ · · · ∧ an 6= 0. (37)

According to (30), its radius ρ and center p are easily obtained from its dual
normal form

s = −(a0 ∧ a1 ∧ a2 ∧ · · · ∧ an) ˜. (38)

It follows that the equation for a sphere can be given in the dual forms:

x ∧ s̃ = 0 ⇐⇒ x · s = 0. (39)

These equations apply to a hyperplane as a sphere through ∞ by taking,
say a0 = e, to get the dual forms:

ñ = e ∧ a1 ∧ a2 ∧ · · · ∧ an, (40)

n = −(e ∧ a1 ∧ a2 ∧ · · · ∧ an) ˜. (41)

Example: Consider Simson’s construction shown in Fig. 7. Given a triangle
with vertices A, B, C and a point D in a Euclidean plane. Perpendiculars are
dropped from D to the three sides of the triangle, intersecting them at points
A1, B1, C1.

The circumcircle of triangle e∧A∧B∧C is s̃ = A∧B∧C, so we can obtain
its radius from

ρ2 =
( s

s · e
)2

=
s̃†s̃

(s̃ ∧ e)2
=

(C ∧B ∧A) · (A ∧B ∧ C)
(e ∧A ∧B ∧ C)2

. (42)
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The following identity can be derived:

e ∧A1 ∧B1 ∧ C1 =
A ∧B ∧ C ∧D

2ρ2
. (43)

It follows that A ∧B ∧C ∧D = 0 if and only if e ∧A1 ∧B1 ∧C1 = 0. In other
words, D lies on the circumcircle if and only if A1, B1, C1 are collinear. This is
Simson’s Theorem.

7 Conformal and Euclidean Groups

Orthogonal transformations on Minkowski space are called Lorentz transforma-
tions. Any Lorentz Transformation G can be expressed in the canonical form

G(x) = ε G x G−1 = σx′, (44)

where G is a versor with parity ε = ±1. G is the versor representation of G,
usually called the spin representation if ε = +1.

Lorentz transformations leave the null cone x2 = x′2 = 0 invariant. How-
ever, the condition e·x′ = e·x = 1 is not Lorentz invariant, so a point-dependent
scale factor σ has been introduced into (44) to compensate for that.

The Lorentz group on Rn+1,1 is isomorphic to the conformal group on Rn,
and the two groups are related by the conformal split

Gε[x + 1
2x

2e + e∗ ]EG−1 = σ[x′ + 1
2 (x′)2e + e∗ ]E, (45)

where
x′ = g(x) (46)

is a conformal transformation on Rn.
The great advantage of the versor representation is that it reduces the com-

position of conformal transformations to versor multiplication, as expressed by
the correspondence

g3(x) = g2[g1(x)] ⇐⇒ G3 = G2G1.

Every versor G can be expressed as the product of non-null vectors, as
expressed by G = sk . . . s2 s1. A vector factor may represent either a hyperplane
or a sphere in Rn, as explained in the preceding section.

Reflection in the (hyper)plane specified by a vector n, has the simple form:

n(x) = −nxn−1 = x′, (47)

with σ = 1. Rotations and translations can be generated multiplicatively from
reflections. Thus, reflections in two planes m and n that intersect at a point c
(Fig. 8), generate a rotation around the line of intersection, as specified by

G = mn = (mE − em · c)(nE − en · c)

9



= mn− e(m ∧ n) · c

= R− e(R× c). Fig. 8

.
c n

m

A translation by reflection in parallel planes m, n is specified by

G = mn = (mE − eδ)(nE + 0)

= 1 + 1
2ae = Ta,

where a = 2nδ, as shown in Fig. 9.
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The group of rigid displacements on E3 is called the (special) Euclidean
group SE(3). Each group element D can be expressed in the form

D(x) = DxD−1, (48)

where the displacement versor D = TaR specifies a rotation around an axis with
direction n = RnR† through the origin, followed by a translation Ta = 1+ 1

2ea.
According to Chasles’ Theorem: Any rigid displacement can be expressed

as a screw displacement. This can be proved by finding a point b on the screw
axis so that

D = Ta‖Ta⊥R = Ta‖Rb (49)

where a‖ = (a · n)n, and
Rb = R + eb×R , (50)

is a rotation that leaves b fixed. Equation (49) can be solved directly for

b = a⊥(1−R−2)−1 = 1
2a⊥

1−R2

1− 〈R2 〉 . (51)

This illustrates the computational power of geometric algebra.
The displacement versor can be put in the screw form

D = e
1
2 S , (52)

where
S = −im + en, (53)

where i = Ẽ is the pseudoscalar for E3, and S is called a screw. The screws
compose se(3), the Lie algebra of SE(3). It is a bivector algebra, closed under
the commutator product:

S1 × S2 = 1
2 (S1S2 − S2S1) . (54)

All the elements of screw theory are natural consequences of geometric algebra!
Each screw has a unique decomposition into a null and a non-null part:

Sk = −imk + enk. (55)
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The geometric product of two screws has the decomposition

S1S2 = S1 · S2 + S1 × S2 + S1 ∧ S2. (56)

Under a rigid displacement U, the transformation of a screw is given by

S′k = USk = USkU−1 = AdU Sk. (57)

This is the “adjoint representation” of SE(3), as indicated by the notation on
the right. The transformation (57) preserves the geometric product:

S′1S
′
2 = U(S1S2) = U(S1 · S2 + S1 × S2 + S1 ∧ S2)U−1

The invariants
Ue = e , Ui = i (58)

imply the invariants:

U(S1 ∧ S2) = S1 ∧ S2 = −ie(m1 · n2 + m2 · n1), (59)

S′1 · S′2 = S1 · S2 = −m1 ·m2. (60)

The latter invariant may be recognized as the Killing Form for se(3).
It is convenient to introduce the notion of a coscrew (Ball’s reciprocal screw)

defined by

S∗k ≡ 〈Skie∗ 〉2 = 1
2 (Skie∗ + ie∗Sk) = ink + mke∗. (61)

Then the invariant (57) can be written in the scalar-valued form:

S∗1 · S2 = S∗2 · S1 = 〈 (S1 ∧ S2)ie∗ 〉 = m1 · n2 + m2 · n1. (62)

For a single screw we get the pitch invariant:

h = 1
2

S∗ · S
S · S = n ·m−1 (63)

8 Screw Mechanics

Screw theory with geometric algebra enables us to combine the rotational and
translational equations of motion for a rigid body into a single equation. The
kinematics of a body point

x = Dx0D
−1 (64)

is completely characterized by the displacement spinor D = D(t), which obeys
the kinematical equation

Ḋ = 1
2V D (65)

with
V = −iωωω + ve, (66)
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where ωωω is the angular velocity of the body and we can take v to be its center-
of-mass velocity. It follows that x

. = V · x and ẋ = ωωω × x + v.
A comomentum P is defined for the body by

P = M V = iI ωωω + mve∗ = i`̀ + pe∗. (67)

This defines a generalized “mass tensor” M in terms of the inertia tensor I
and the body mass m. According to the transformation equations below, the
comomentum is a coscrew.

The coforce or wrench W acting on a rigid body is defined in terms of the
torque ΓΓ and net force f by

W = iΓΓ + fe∗. (68)

The dynamical equation for combined rotational and translational motion then
takes the compact form:

Ṗ = W, (69)

where the overdot indicates a time derivative. An immediate consequence is the
conservation law

K̇ = V ·W = ωωω · ΓΓ + v · f (70)

for kinetic energy
K = 1

2V · P = 1
2 (ωωω · `̀ + v · p). (71)

A change of reference frame, including a shift of base point, is expressed by

x −→ x′ = Ux = UxU−1. (72)

We consider here only the case when the spinor U is constant. Then (72) induces
the transformations

V ′ = U V, (73)

P = UP ′. (74)

Thus, the transformation of V is Covariant, while the transformation of P is
Contravariant. Their scalar product is the Invariant

P ′ · V ′ = P · V. (75)

There is much more about all this in [8], [9] and [10], especially applications.
For more screw theory, see [11] and [12].

9 Conclusions

We have seen that the homogeneous model for Euclidean space has at least three
major advantages.

I. Intrinsic properties of En are embedded in the algebraic properties of ho-
mogeneous points. In other words we have
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This was Grassmann’s great goal, and he would surely be pleased to know
that it has finally been achieved, although the path has not been straightforward.

II. All spheres and hyperplanes in En are uniquely represented by vectors in
Rn+1,1. This unifies and simplifies the treatment of spheres and hyperplanes,
especially with respect to duality properties.

III.
Conformal group

on         (or       ) { }E n n

Lorentz  group

      on     { }R R n+1,1

n+1,1

= ~

Versor  group

      in     { }R = ~
2

This isomorphism linearizes the conformal group and reduces composition
of conformal transformations to versor multiplication.
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