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The Dirac equation has a hidden geometric structure that is made manifest by
reformulating it in terms of a real spacetime algebra. This reveals an essential
connection between spin and complex numbers with profound implications
for the interpretation of quantum mechanics. Among other things, it suggests
that to achieve a complete interpretation of quantum mechanics, spin should
be identified with an intrinsic zitterbewegung.

I. Introduction

“I entirely agree . . . there are still many mysteries in the Dirac electron
theory.” So wrote Olivier Costa de Beauregard in a letter to me dated July 8,
1968. Beginning with his doctoral thesis [1], much of his career has been devoted
to exploring those mysteries. Though he himself made seminal contributions to
understanding the Dirac theory, I am sure he would agree that many mysteries
remain today, and their resolution is crucial to clarifying the physical content of
quantum mechanics. In tribute to Olivier and acknowledging my debt to him,
I cannot do better than review my own perspective on the Dirac mysteries and
the insights we can gain from studying them.

A related mystery that has long puzzled me is why Dirac theory is almost uni-
versally ignored in studies on the interpretation of quantum mechanics, despite
the fact that the Dirac equation is widely recognized as the most fundamental
equation in quantum mechanics. That is a huge mistake, I believe, and I hope
to convince you that Dirac theory provides us with insights, or hints at least,
that are crucial to understanding quantum mechanics and perhaps to modifying
and extending it. Specifically, I claim that an analysis of Dirac theory supports
the following propositions:

(P1) Complex numbers are inseparably related to spin in Dirac theory. Hence
spin is essential to the interpretation of quantum mechanics even in Schroedinger
theory.

(P2) Bilinear observables are geometric consequences of rotational kinemat-
ics, so they are as natural in classical mechanics as in quantum mechanics

(P3) Electron spin and phase are inseparable kinematic properties of electron
motion (zitterbewegung).

Though the first two propositions are not well known, they should not be
controversial, because they are rigorous features of Dirac theory that are brought
to light by reformulating it in a way that makes its inherent geometric structure
explicit. The third proposition is debatable, but it has the virtue of providing
a more complete account of the structure of Dirac theory than any alternative.
I have dubbed it the Zitterbewegung interpretation of quantum mechanics [2].
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It strongly suggests that quantum phenomena have a substructure that is not
fully captured in anybody’s theory.

These three propositions have been discussed at length before, so I refer to
recent reviews [3, 4]. Here I supply only enough detail to make grounds for the
propositions understandable and to comment on related mysteries.

II. Spacetime Algebra

One of the most familiar mysteries of quantum mechanics is the essential role
of complex amplitudes. So it may be surprising to learn that complex scalars
are superfluous in the Dirac theory. This has been unequivocally proved by
reformulating the Dirac theory in terms of the real Spacetime Algebra (STA),
often called a Clifford algebra in the mathematics literature. We need a brief
introduction to STA to see how it changes the form of Dirac theory.

For readers familiar with the Dirac matrix algebra, the quickest approach
to the STA is by reinterpreting the Dirac matrices as an orthonormal frame
{γµ; 0, 1, 2, 3} of basis vectors for spacetime. The signature of spacetime is
specified by the rules:

γ2
0 = 1 and γ2

1 = γ2
2 = γ2

3 = −1 (1)

Note that the scalar 1 in these equations would be replaced by the identity
matrix if the γµ were Dirac matrices. Thus, (1) is no mere shorthand for matrix
equations but a defining relation of vectors to scalars that encodes spacetime
signature in algebraic form.

Of course, any spacetime vector v can be expressed as a linear combination
v = vµγµ of the basis vectors. The entire STA is generated by defining an
associative geometric product on the vectors. For vectors u, v the product uv
can be decomposed into a symmetric inner product

u · v = 1
2 (uv + vu) = v · u, (2)

and an antisymmetric outer product

u ∧ v = 1
2 (uv − vu) = −v ∧ u. (3)

so that

uv = u · v + u ∧ v . (4)

It follows from (1) that the inner product u · v is scalar-valued and, indeed,
is the standard inner product for Minkowski spacetime. The outer product
produces a new kind of geometric object u ∧ v called a bivector, which can be
interpreted geometrically as an oriented area for the plane containing u and v.

By forming all distinct products of the γµ we obtain a complete basis for the
STA consisting of the 24 = 16 linearly independent elements

1, γµ, γµ ∧ γν , γµi, i = γ0γ1γ2γ3 . (5)
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A generic element M of the STA, called a multivector, can therefore be written
in the expanded form

M = α + a + F + bi + βi , (6)

where α and β are scalars, a and b are vectors, F = 1
2Fµνγµ ∧ γν is a bivector,

and i is the unit pseudoscalar.
Computations are facilitated by introducing a few definitions and notations.

Thus, the multiplipative reverse of M can be defined by

M̃ = α + a− F − bi + βi . (7)

The scalar part of M is denoted by 〈M〉. The multivector M is said to be even
if its vector part a and its pseudovector part ib vanish.

III. Real Dirac Theory

At last we are prepared to write the Dirac equation in terms of the real STA:

∂ψγ2γ1h̄− eAψ = mψγ0 , (8)

where ∂ = γµ∂µ, A = Aµγµ is the electromagnetic vector potential, and the
wave function ψ is an even multivector. This equation is called the real Dirac
equation, because no complex scalars are involved.

Some physicists recoil at first sight of the explicit γ2γ1 and γ0 in (8), claiming
immediately that the equation cannot be Lorentz covariant. However, covari-
ance is easily proved [3], and the mistaken impression that (8) is more compli-
cated than the standard matrix form of the Dirac equation is dispelled when
its geometric structure is understood. Indeed, replacement of the unit imagi-
nary in the matrix Dirac equation by the bivector γ2γ1 = γ2 ∧ γ1 in (8) points
undeniably to a geometric meaning for complex numbers in quantum mechanics.

Two advantages of (8) over the matrix version can be noted at once. First,
it shows that particular matrix representions are irrelevant to the physics in
Dirac theory, because they have been completely eliminated. Second, it shows
that complex scalars are likewise irrelevant by eliminating them in favor of real
scalars. In other words, the Dirac matrix algebra over a complex scalar field has
twice as many degrees of freedom as needed for the physics. Eliminating these
superfluous degrees of freedom not only simplifies the theory, it opens the door
to clarifying the geometric structure of the theory, and that has direct bearing
on its physical interpretation.

Although I first derived the real form (8) for the Dirac equation in [5], I did
not really understand its significance until [6], where I derived it in a different
way and established the geometric content of the wave function ψ as follows.

One of the postulates of quantum mechanics is that observables are bilinear
functions of the wave equation. Since ψ is an even multivector, the bilinear
quantity ψψ̃ can have only scalar and pseudoscalar parts, as expressed by writing

ψψ̃ = ρeiβ = ρ(cos β + i sin β) , (9)
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where ρ and β are scalars. It follows that, if ρ 6= 0 , we can write ψ in the
invariant canonical form

ψ = (ρeiβ)
1
2 R, (10)

where

RR̃ = R̃R = 1 . (11)

A set of bilinear vector observables is constructed from ψ by writing

ψγµψ̃ = ρeµ , (12)

where

eµ = RγµR̃ . (13)

This shows that R is a rotor (or spin representation of a Lorentz transforma-
tion) that takes a fixed frame {γµ} into a frame {eµ}. Thus, six of the eight
degrees of freedom in the Dirac wave function can be identified with a Lorentz
transformation.

So far everything said about ψ is simply mathematics. Its importance is that
it establishes the purely geometric properties of the wave function. Now the
problem is to use this geometric insight in establishing a physical interpretation
of the wave function. First, we can identify

ψγ0ψ̃ = ρe0 = ρv (14)

as the Dirac probability current by deriving its conservation law

〈∂(ψγ0ψ̃)〉 = ∂ · (ρv) = 0 (15)

from the Dirac equation (8). This supports the standard physical interpretation
of ρ as a probability density and the unit timelike vector v = e0 as electron
velocity along streamlines of the continuity equation (15).

The notation

s = 1
2 h̄e3 (16)

suggests identification as a spin vector. Analysis of angular momentum conser-
vation shows that spin is properly represented by the bivector quantity

S = 1
2 h̄Rγ2γ1R̃ = 1

2 h̄e2e1 = 1
2 h̄ie3e0 = isv. (17)

The last term here justifies the representation of spin by a vector.
These considerations show that the physical interpretation given to the frame

field {eµ} is a key to interpretation of the entire Dirac theory. Their identifica-
tion with electron velocity and spin shows that the eµ can be interpreted directly
as descriptors of the local kinematics of electron motion. It follows from (13),
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TABLE I: BILINEAR COVARIANTS

Scalar Ψ̃Ψ = Ψ†γ0Ψ = 〈ψψ̃〉 = ρ cos β

Vector Ψ̃γµΨ = Ψ†γ0γµΨ = 〈ψγ0ψ̃γµ〉 = 〈ψ†γ0γµψ〉

= (ψγ0ψ̃) · γµ = (ρv) · γµ = ρvµ

Bivector
e

m

i′h̄

2
Ψ̃

1
2
(
γµγν − γνγµ

)
Ψ =

eh̄

2m

〈
γµγνψγ2γ1ψ̃

〉
= (γµ ∧ γν) · M = Mνµ =

e

m
ρ(ieiβsv) · (γµ ∧ γν)

Pseudovector 1
2 i′h̄Ψ̃γµγ5Ψ = 1

2 h̄〈γµψγ3ψ̃〉 = γµ · (ρs) = ρsµ

Pseudoscalar Ψ̃γ5Ψ = 〈iψψ̃〉 = −ρ sinβ

In this table the column matrix representation of the wave function is denoted by Ψ, the

scalar imaginary unit is denoted by i′, and the more conventional symbol γ5=γ0γ1γ2γ3 is used

for the matrix representation of the unit pseudoscalar i. The electron charge has been inserted

in the bivector expression to show its identification as the magnetization tensor in the Dirac

theory.

therefore, that the rotor R component of the electron wave function (10) is a
descriptor of local electron kinematics.

But spin and velocity determine only five of the six parameters in the local
Lorentz transformation (13) specified by R. Through (13) they determine the
plane containing the vectors e2 and e1, but one more parameter is needed to
determine the orientation of these vectors in that plane. That parameter is the
phase of the wave function. Thus, STA reveals that the quantum mechanical
phase has a geometrical interpretation relating it to local kinematics of electron
motion. This striking fact cries out for a physical interpretation! We return to
that problem at the end of the paper.

For comparison, the equivalence of STA expressions to standard matrix ex-
pressions for bilinear covariants is shown in Table I.

At this point real Dirac theory is sufficiently well developed to assess some
of its novel implications. The creation of the Dirac equation was shrouded in
mystery that persists to this day. Dirac created a first order relativistic wave
equation, and, miraculously, spin appeared with no further assumptions. Where
did it come from? The conventional answer is that it came from the Dirac
matrices, a relativistic generalization of the Pauli matrices. However, STA tells
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us that the γµ have nothing to do with spin; they are merely vectors that
provide an algebraic encoding of spacetime properties. Moreover, STA removes
the mystery from the socalled “Dirac operator” γµ∂µ by identifying it as the
“vector derivative with respect to a spacetime point” [3]; as such, it combines
divergence and curl in a single differential operator that simplifies Maxwell’s
equations and is recognized as the fundamental tool for a general Geometric
Calculus [7].

If the γµ have nothing to do with spin, how did spin get into the Dirac
equation in the first place? The answer comes from the association of the
bivector γ2γ1 with electron spin in (19). Referring to the real Dirac equation
(8), we see that spin was inadvertantly incorporated into the Dirac equation by
assigning the imaginary unit to the derivatives. Here is another striking feature
of the Dirac theory that cries out for analysis. More about it below.

Thus we see that STA dispells much of the original mystique of the Dirac
theory. But it raises new questions that hopefully can lead us to a more coherent
interpretation of quantum mechanics where the full kinematical significance of
spin is evident.

This is where real Dirac theory stood after my first published paper on the
subject [6], although I was not so proficient at articulating its novel implications
at that time. I still had much more to learn about the Dirac theory. Soon
afterward I heard from Costa de Beauregard for the first time.

IV. Observables & Operators in real Dirac theory

In a most diplomatic manner, Costa de Beauregard called attention to a mistake
in my first paper [6] by simply asking a question about one of my results. From
the Dirac equation one can derive an equation for the divergence of the vector
spin density in much the same way that divergence of the probability current is
established. The curious result is

∂ · (ρs) = −mρ sin β. (18)

In my initial derivation the right side arises as the sum of two terms, which in
my naiveté, I had cancelled to get a new conservation law. Olivier’s searching
question directed my attention immediately to my careless treatment of signs. In
a subsequent letter he informed me about the original derivation of the equation
by Uhlenbeck and Laporte [8].

This was a good lesson for a fledgling physicist. Besides enabling me to
correct my mistake in a subsequent paper [9], it raised problems with physical
interpretation of the mysterious parameter β. In my first paper I noted that β
correctly distinguishes between electron and positron plane wave states, and I
suggested that it describes an admixture of particle and antiparticle states in
general. However, I could not square that general interpretation with equation
(18). This stimulated me to study, with my student R. Gurtler, the strange
behavior of β in Dirac solutions of the hydrogen atom, which only exacerbated
the problem of interpretation. To this day the physical significance of β remains
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an abiding mystery of the Dirac theory. Of course, no one has made any sense
of equation (18) either.

Why should one care about the physical interpretation of β when the text-
books don’t even mention it? The reason is that (9) and (10) show that β is a
Lorentz invariant property of the wave function, and all the other parameters of
the wave function can be given clear geometrical and physical interpretations.

The new insights brought by the STA formulation and the problems of phys-
ical interpretation exacerbated by input from Costa de Beauregard stimulated
me to undertake a systematic study of observables, identities and conservation
laws in the real Dirac theory. The project turned out to be surprisingly com-
plex. I am still quite proud of the result [9], though it did not produce the
complete and coherent physical interpretation that I was looking for. For me, it
did clarify the structure of the Dirac theory and the problems of interpretation,
though, so far as I know, it has not influenced anyone else. To someone who is
not conversant with STA my ten pages of computation and definitions may look
unnecessarily complicated, but, in a brilliant tour de force, it took Takabayasi
[10] more than one hundred pages to do much the same thing with standard
matrix and tensor methods. I regard that as an impressive demonstration of
the mathematical power of STA.

I had nearly finished this work in 1971 when Costa de Beauregard visited
me in Arizona. Accompanied by his brilliant student Christian Imbert, he was
on a lecture tour advertising results of their joint theoretical and experimental
research on noncollinearity of velocity and momentum in electron theory and
optics. He was surprised and gratified by my immediate positive response, as
they had met mostly skepticism and disbelief on the rest of their trip. I was
already steeped in questions about observables in Dirac theory, and here they
arrive with fresh insights and experimental tests to boot! [11, 12] I learned
from them the importance of asymmetry in the energy-momentum tensor and
the feasibility of experiments to test for it. I learned to see this asymmetry as
a consequence of intrinsic spin and an expression of noncollinearity of velocity
and momentum.

The question of asymmetry in the energy-momentum tensor is a prime ex-
ample of the critical role for definitions of observables in the interpretation of
quantum mechanics. How does one know, for example, whether the Dirac cur-
rent or the Gordon current (Table II) is correctly identified as a probability
current or a charge current, as both are conserved? I got it wrong in [9], but
corrected it in [13], where it is pointed out that such mistakes are rife in the
literature. Here, taking the formulation and analysis of conservation laws in the
Dirac theory for granted, we concentrate on the definitions of observables and
their physical interpretation.

Table II lists standard matrix expressions for basic observables equated to
their STA counterparts. Kinetic energy-momentum operators pµ are defined as
usual in the matrix theory by

pµ = i′h̄∂µ − e Aµ . (19)
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TABLE II: Observables of the energy-momentum operator,
relating real and matrix versions.

Energy-momentum tensor Tµν = Tµ · γν = 〈γ0ψ̃ γµ pνψ〉

= Ψ̃γµ pνΨ

Kinetic energy density T 00 = 〈ψ†p0ψ〉 = Ψ†p0Ψ, ψ† = γ0ψ̃γ0

Kinetic momentum density T 0k = 〈ψ†pkψ〉 = Ψ†pkΨ

Angular Momentum tensor Jναβ =
[
T ν ∧ x + iρ(s ∧ γν)

]
· (γβ ∧ γα)

= T ναxβ − T νβxα − i′h̄

2
Ψ̃γ5γµΨεµναβ

Gordon current Kµ =
e

m
〈ψ̃ pµψ〉 =

e

m
Ψ̃pµΨ

The corresponding STA definition is

pµ = i h̄∂µ − e Aµ , (20)

where the underbar signifies a “linear operator” and the operator i signifies
right multiplication by the bivector γ2γ1, as defined by

iψ = ψγ2γ1 . (21)

The importance of (20) can hardly be overemphasized. Above all, it embodies
the fruitful “minimal coupling” rule, a fundamental principle of gauge theory
that fixes the form of electromagnetic interactions. In this capacity it played
a crucial heuristic role in the original formulation of the Dirac equation, as is
clear when the equation is written in the form

γµ pµψ = ψγ0m . (22)

In light of our previous explanation for the origin of spin in Dirac theory, we can
pinpoint the definition of pµ as the crucial assumption that introduced spin. It
behooves us to examine what STA can tell us about the geometrical and physical
significance of this fundamental operator.

First a word about the relation of operators to observables in quantum me-
chanics. As an impressionable student, I had the privilege of attending Richard
Feynmann’s course on quantum electrodynamics. His impious ridicule of tradi-
tional verities helped embolden me to question received knowledge for myself.
In particular, his tirade against axiomatic formulations of quantum mechanics
emblazoned the following words on my memory:

“If anyone tells me that ‘to every observable there corresponds a hermitian
operator for which the eigenvalues correspond to observed values,’ I will defeat
him! I will cut his feet off!” (emphasis his!).
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He supported his position by showing that associating observables with func-
tions of Dirac matrices leads to physical absurdities, particularly in interpreting
commutation relations. Later on I realized that STA explained why. For ex-
ample, for µ = 1, 2, 3 the matrices γµγ0 are hermitian operators that are some-
times identified as velocity operators [23]. The fact that they anticommute is
taken to mean that velocities in orthogonal directions cannot be simultaneously
measured, and the fact that each has eigenvalues ±1 is taken to mean that
the electron’s instantaneous velocity is the speed of light (we are using natural
units with c = 1) so it must be fluctuating rapidly (zitterbewequng) to produce
the much lower average velocity that is observed. On the contrary, STA shows
that the γµ should be regarded as mere vectors, and a glance at Table I shows
them as operators only in the trivial sense that basis vectors can be regarded
as operators that pick out components of a given vector.

With that cautionary note, it can be asserted without question that the
physical interpretation of standard quantum mechanics is crucially dependent
on meaning ascribed to the kinetic energy-momentum operators pµ, specifi-
cally through their role in defining the components Tµν of the electron energy-
momentum tensor as given in Table II.

Accordingly, the energy-momentum flux in direction γµ is given by

Tµ = T (γµ) = Tµνγν (23)

The flux along a Dirac streamline with tangent v = e0 is

T (v) = vµTµ = ρ p . (24)

This defines a local “expected” momentum vector p = p(x). It can be regarded
as a statistical prediction for the momentum of the electron at the spacetime
point x. It can be identified with the Gordon current (Table II) only when
sinβ = 0 [3], one of the many ways that β complicates physical interpretation.
In that case, ρp is a conserved current with streamlines of momentum flow,
just like the Dirac current eρv is assumed to give streamlines of charge flow.
Therefore, noncollinearity of p and v means that charge and energy flows are
not concurrent.

When the vector field p = p(x) is uniformly constant, it is the vector eigen-
value of the energy-momentum operator, that is,

pψ = pψ. (25)

The eigenfunction, of course, is a plane wave. As a rule, this is the only way
that the vector p appears in conventional quantum mechanics.

In general, the momentum p is not collinear with the local velocity v = v(x),
because it includes a contribution from the spin. A measure of this noncollinear-
ity is p∧ v. As I discovered in [9] and summarized in [3], analysis and interpre-
tation of local conservation laws is considerably simplified by expressing them
in terms of v and p. For example, the angular momentum density in Table II
assumes the perspicuous form:

J(v) = ρ(p ∧ x + S) , (26)
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where, with the spacetime point represented by vector x, p ∧ x is recognized
as the expected orbital angular momentum and S = isv is the spin bivector
defined in (19).

We still need to ascertain precisely how the kinetic momentum p is related
to the wave function. For that purpose we employ the invariant decomposition
of the wave function ψ in (10). By differentiating RR̃ = 1, it is easy to prove
that derivatives of the rotor R must have the form

∂µR = 1
2 ΩµR , (27)

where Ωµ = Ωµ(x) is a bivector “rotational velocity”. Accordingly, action on ψ
of the energy momentum operator (20) can be put in the form

pνψ = [ ∂ν(ln ρ + iβ) + Ων ]Sψ − eAνψ . (28)

Inserting this in the definition for the energy-momentum tensor in Table II, we
obtain the explicit expression

Tµν = ρ
[
vµ(Ων · S − eAν)− (γµ ∧ v) · (∂νS)− sµ∂νβ

]
, (29)

where the derivative of the spin bivector is given by

∂µS = 1
2 (ΩµS − SΩµ) . (30)

From this we find, by (24), the momentum components

pν = Ων · S − eAν . (31)

This remarkable equation reveals that (apart from the Aν contribution) the
momentum has a kinematical meaning related to the spin: It is completely de-
termined by the component of Ων in the spin plane. In other words, it describes
the rotation rate of the frame {eµ} in the spin plane or, if you will “about the
spin axis.” But we have identified the angle of rotation in this plane with the
phase of the wave function. Thus, the momentum describes the rate of phase
change of the wave function in all directions. The component of (31) along the
Dirac streamline can be interpreted as an energy in the local electron rest frame,
given by

p · v = Ω · S − eA · v . (32)

A physical interpretation for this geometrical fact will be offered later.
As a general observation about the structure of observables, we note that

STA disabuses us of the conventional belief that representation of observables
by bilinear functions of the wave function, as shown in Tables I and II, is unique
to quantum mechanics. On the contrary, equation (12) and its subsequent
interpretation shows that bilinearity is a consequence of employing the spin
representation of a Lorentz transformation. Reference [3] shows that STA makes
the same spin representation equally useful and powerful in relativistic classical
mechanics, and, not so incidentally, it simplifies and clarifies the classical limit of
the Dirac equation. Thus, bilinearity of observables is not an essential difference
between classical and quantum mechanics.
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V. Spin and Zitterbewegung

At last we are ready to grapple with the most profound insight and the deepest
mystery in the real Dirac theory: The inseparable connection between quantum
mechanical phase and spin! This flies in the face of conventional wisdom that
phase is an essential feature of quantum mechanics, while spin is a mere detail
that can often be ignored. We have seen that it is a rigorous feature of real Dirac
theory, though it remains hidden in the matrix formulation. To understand the
physical significance of this feature, indeed, to provide a physical interpretation
for the whole theory, we need to make some ontological commitment about the
nature of the electron. To my knowledge, the most promising commitment is
to assume that the electron is a structureless point particle with a continuous
history in spacetime. Though the assumption of a unique continuous history
has been rejected by many physicists, it has been vigorously defended by David
Bohm [21] and many others. Ultimate justification will depend on its success
in interpreting the theory and what the theory can tell us about the histo-
ries. Perceptive readers will have noticed tacit assumptions about the electron
throughout this paper. Now it is necessary to be more explicit.

The Dirac current ρv assigns a unit timelike vector v(x) to each spacetime
point x where ρ 6= 0. As already mentioned, we interpret v(x) as the expected
proper velocity of the electron at x, that is, the velocity predicted for the electron
if it happens to be at x. The velocity v(x) defines a local reference frame at
x called the (local) electron rest frame. The proper probability density ρ =
(ρv) · v can be interpreted as the probability density in the rest frame. By a
well known theorem, the probability conservation law (15) implies that through
each spacetime point there passes a unique integral curve (or streamline) that
is tangent to v at each of its points. In any spacetime region where ρ 6= 0,
a solution of the Dirac equation determines a family of streamlines that fills
the region with exactly one streamline through each point. The streamline
through a specific point x0 is the expected history of an electron at x0, that
is, it is the optimal prediction for the history of an electron that actually is at
x0 (with relative probability ρ(x0), of course!). Parametrized by proper time τ ,
the streamline x = x(τ) is determined by the equation

dx

dτ
= v(x(τ)) . (33)

Motion along a Dirac streamline x = x(τ) is determined by the kinematical
rotor factor R = R(x(τ)) in the Dirac wave function (10). The rotor determines
the comoving frame {eµ = R γµR̃} on the streamline with velocity e0 = v =
v(x(τ)), while the spin vector s and bivector S are given as before by (18)
and (19). In accordance with (27), the directional derivative of R along the
streamline has the form

Ṙ = v · ∂R = 1
2ΩR , (34)

where the overdot indicates differentiation with respect to proper time, and

Ω = vµΩµ = Ω(x(τ)) (35)
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is the rotational velocity of the frame {eµ}; thus,

ėµ = v · ∂ eµ = Ω · eµ . (36)

These equations are identical in form to equations for the classical theory of a
relativistic rigid body with negligible size given in [3] and shown to be derivable
as a classical limit of the Dirac equation. The only difference between classical
and quantum theory is in the functional form of Ω. Our main task, therefore, is
to investigate what Dirac theory tells us about Ω and what that has to do with
spin.

The origin of spin has been a great mystery since the inception of quantum
mechanics. Many students of Dirac theory, including Schroedinger [22, 23] and
Bohm [21], have suggested that the spin of a Dirac electron is generated by
localized particle circulation that Schroedinger called zitterbewegung (= trem-
bling motion). To study that possibility, classical models of the electron as
a point particle with spin were first formulated by Frenkel [14] and Thomas
[15], improved by Mathisson [16], and given a definitive form by Weyssenhoff
[17, 18]. They are of interest here for the insight they bring to the interpretation
of Dirac theory. They are also of practical interest, for example, in the study of
spin precession [24, 25] and tunneling [26, 20].

In Weyssenhoff’s analysis [18] the classical models fall into two distinct
classes, differentiated by the assumption that the electron’s spacetime history
is timelike in one and lightlike in the other. The timelike case has been studied
by many investigators [19]. Ironically, the lightlike case, which Weyssenhoff re-
garded as far more interesting, seems to have been ignored. We shall see that
both versions appear naturally in the real Dirac theory, and physical assump-
tions are needed to discriminate between them.

We begin our analysis by examining what STA can tell us about a free
particle; then we extend it to a more comprehensive interpretation of Dirac
theory.

We noted in (25) that, for a free particle with given momentum p, the wave
function ψ is an eigenstate of the “energy-momentum operator.” This reduces
the Dirac equation to the algebraic equation

pψ = ψγ0m. (37)

The solution is a plane wave of the form

ψ = (ρeiβ)
1
2 R = ρ

1
2 eiβ/2R0e

−γ2γ1p·x/h̄ , (38)

where the kinematical factor R has been decomposed to explicitly exhibit its
spacetime dependence on a phase satisfying ∂(p · x) = p. Inserting this into (37)
and solving for p we get

p = meiβRγ0R̃ = mve−iβ . (39)

This implies eiβ = ±1, so

eiβ/2 = 1 or i , (40)
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and p = ±mv corresponding to two distinct solutions. One solution appears to
have negative energy E = p · γ0, but that can be rectified by changing the sign
in the phase of the “trial solution” (38).

Thus we obtain two distinct kinds of plane wave solutions with positive
energy E = p · γ0:

ψ− = ρ
1
2 R0e

−γ2γ1p·x/h̄ , (41)

ψ+ = ρ
1
2 iR0e

+γ2γ1p·x/h̄ . (42)

These can be interpreted as electron and positron wave functions.
Determining the comoving frame {eµ} for the electron solution (41), we find

that the velocity v = R0γ0R̃0 and the spin s = 1
2 h̄R0γ3R̃0 are constant, but,

for k = 1, 2,

ek(τ) = ek(0)e−p·x/S = ek(0)ee2e1ωτ , (43)

where τ = v · x is the proper time along the streamline and frequency ω is given
by

ω =
2m

h̄
= 1.6× 1021 s−1 . (44)

Thus, the streamlines are straight lines along which the spin is constant, and
e1 and e2 rotate about the “spin axis” with the ultrahigh frequency (44) as
the electron moves along the streamline. This is precisely the zitterbewegung
(zbw) frequency that Schroedinger attributed to interference between positive
and negative energy components of a wave packet [22, 23], whereas here it comes
directly from the phase of the positive energy wave function alone. Another
troubling feature of this solution is that it fails to exhibit the noncollinearity of
velocity and momentum that is so fundamental to the general theory. We see
how to resolve these issues below.

Obviously, our simple and transparent geometrical picture of comoving vec-
tors e1 and e2 rapidly rotating about the spin vector e3 as the electron moves
along a streamline generalizes to arbitrary solutions of the Dirac equation, so it
should be telling us about some general property of the electron. To get a bet-
ter idea about what that might be, we examine the general class of unimodular
solutions to the Dirac equations, so-called because they assume constant ρ and
β = 0.

Consider a unimodular free particle solution of the form

ψ = e
1
2ΩτR0, (45)

where

Ω = ωR1γ1γ2R̃1 (46)

is a constant spacelike bivector, R0 is a constant rotor and τ = p̂ · x, where p̂
is a unit vector. This reduces to the positive energy plane wave solution (41)
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when R1 = R0, but otherwise it gives us something new. Inserting it into the
Dirac equation, we get the algebraic relation

h̄

2
p̂ Ω ψγ2γ1 = mψγ0. (47)

Multiplication on the right by ψ̃ and on the left by p̂ gives us an elegant equation
relating spin, momentum and velocity:

ΩS = pv. (48)

Its scalar part

p · v = Ω · S. (49)

is a constant of motion that can be interpreted as energy in “the electron’s rest
frame.” Since

Ṡ = 1
2 (ΩS − SΩ), (50)

the bivector part of (48) gives us

Ṡ = p ∧ v. (51)

This is precisely Wessenhoff’s classical equation for angular momentum con-
servation [17], the noncollinearity of v and p compensating for the precessing
spin.

The velocity v precesses with the zbw frequency ω and fixed angle relative
to the constant momentum vector p. The streamline is readily found to be a
timelike helix with fixed pitch and axis aligned with p. As the velocity oscillates,
or better, wobbles with the same frequency as the phase, let us refer to (45) as
the wobble (plane wave) solution.

We are justified in regarding the wobble solution as a plane wave, because it
is constant on hypersurfaces with normal p. Although it is a simple and natural
solution in STA, to my knowledge its equivalent matrix form has not appeared
in the literature. To see what that form would be, write (45) in the form

ψ = R1e
γ1γ2p·x/h̄R̃1R0 . (52)

Then break U ≡ R̃1R0 = U+ + U− into parts

U± = 1
2 (U ∓ γ2γ1Uγ2γ1) (53)

that commute/anticommute with γ2γ1, to get a “Fourier analysis” of the wobble
solution:

ψ = R1U+e−γ2γ1p·x/h̄ + R1U−e+γ2γ1p·x/h̄ . (54)

Then we see that the wobble solution is a particular superposition ψ = ψ+ +ψ−
of positive and negative energy solutions. The velocity is given by

v = ψγ0ψ̃ = ψ+γ0ψ̃+ + ψ−γ0ψ̃− + ψ+γ0ψ̃− + ψ−γ0ψ̃+, (55)
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which exhibits the zbw oscillations as “interference” between ψ+ and ψ− states
in the last two terms. This explains how Schrödinger could obtain a circulating
electron state by superposition and attribute it to interference.

It also raises interesting theoretical issues about quantizing the one particle
theory to incorporate particle creation and annihilation. The standard approach
identifies positive and negative energy states ψ± as particle/antiparticle states
respectively, and so quantizes them separately. But suppose that, for a free
electron, the wobble state ψ is a more fundamental representation than ψ+.
The standard theory must then introduce pair creation and annihilation to
represent it. Indeed, physicists often describe zbw as a rapid irregular motion of
the electron due to pair creation/annihilation [27], though that does not account
for the regularity of the spin associated with it.

Alternatively, if the wobble state ψ replaced ψ+ as the basic electron state
in quantization, then Feynman diagrams associated with wobble would be mod-
ified or disappear from QED. The resulting theory should be equivalent to the
standard one, because it is based on the same field equations. But the physical
interpretation might be quite different.

As described so far, the wobble solution is not a satisfactory model of zbw,
because its amplitude is variable, and it does not make the connection between
spin and phase that we are looking for. To do better, we augment Dirac theory
with an ontological assumption that completes the kinematical interpretation
of the wave function and observables.

Mindful that the velocity attributed to the electron is an independent as-
sumption imposed on the Dirac theory from physical considerations, we rec-
ognize that a kinematical explanation for spin can be achieved by giving the
electron a component of velocity in the spin plane. An obvious choice is to
identify, or if you will, define the vector e2 as a component of velocity in the
spin plane, so the entire electron velocity is given by the null vector

u = v + e2 = e0 + e2 = R(γ0 + γ2)R̃ . (56)

This gives the vector e2 a physical interpretation that was hitherto missing and
gives the electron phase a kinematical meaning as zbw rotation angle. It follows
that the vector e1 gives the direction of a zbw radius vector.

For the sake of consistency, we need to change our definition of spin angular
momentum. To see how, we reconsider the wobble wave function (45) and its
reduction of the Dirac equation to the algebraic equation (48). Multiplying the
latter by (1 + γ0γ2) we get

h̄

2
p̂ Ω ψ(γ0 + γ2)γ1 = mψ(γ0 + γ2). (57)

As before, this gives us an algebraic relation among the new observables:

ΩΣ = pu, (58)

where we have introduced a new general definition of spin angular momentum:

Σ = 1
2 h̄R(γ0 + γ2)γ1R̃ = 1

2 h̄ue1 = mu ∧ r, (59)
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and

r =
h̄

2m
e1 (60)

is a radius vector for circular zbw with diameter equal to a Compton wavelength,
at least for a free particle. Note that Σ is a null bivector, and the right side of
(59) has the form of an orbital angular momentum.

The solution of (58) proceeds in essentially the same way as before, except
that the electron paths turn out to be lightlike helices centered on Dirac stream-
lines [2]. Therefore, the zbw persists even if wobble is eliminated by adjusting
Ω as explained in connection with (46). Thus, in this model zbw and wobble
are different things. In fact, the equations for electron paths are the same as in
Weyssenhoff’s second (and favorite) model for a classical free particle with spin.
The big difference is that our equations are tied unequivocally to solutions of
the Dirac equation.

Note that the zbw interpretation ensures that the lightlike velocity u is never
collinear with the momentum p, even in the plane wave case. Note also, by (60),
that the electron mass is a measure of curvature (or pitch) in the helical world
line, which might be attributed to electron self-interaction, but that is beyond
the purview of Dirac theory.

Although the frequency and radius ascribed to the zbw are the same here
as in Schroedinger’s work, its role in the theory is quite different. The present
approach associates the zbw phase and frequency with the phase and frequency
of the complex phase factor in the electron wave function. This is the central
feature of the the zitterbewegung interpretation of quantum mechanics, although
in previous accounts [2] the necessity of representing the spin by the null bivector
(59) was not recognized.

The strength of the zbw interpretation lies first in its coherence and complete-
ness in Dirac theory and second in the intimations it gives of more fundamental
physics. It will be noted that the zbw interpretation is completely general, be-
cause the definitions (56) and (59) of zbw velocity and spin are compatible with
any solution of the Dirac equation. One need only recognize that the Dirac
velocity and spin can be interpreted as averages over a zbw period, as expressed
by

v = u and S = Σ̄. (61)

Since the period is on the order of 10−21s, it is v and S rather than u and Σ that
best describe the electron in most experiments. However, (61) suggests that the
Dirac current describes only the average charge flow, while zbw oscillations are
associated with the magnetic moment.

Perhaps the strongest theoretical support for the zbw interpretation is the
fact that it is fundamentally geometrical; it completes the kinematical inter-
pretation of the rotor R in the canonical form (9) for the wave function, so all
components of R, even the complex phase factor, characterize features of the
electron history. The zbw interpretation also brings to light geometric meaning
for the mysterious “quantum energy-momentum operators” pµ by relating them
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to the computation of phase rotation rate with the equation pν = Ων · S− eAν .
This suggests that energy is stored in the zbw.

I believe it fair to say that the zbw concept provides the most complete
physical interpretation of Dirac theory that is available. It does not resolve all
the mysteries of quantum mechanics, but it suggests new directions for research.
In particular, it suggests the existence of a substructure in quantum mechanics
that should be amenable to some kind of experimental test if it is ontologically
real. Join me in the search!

Note. The papers listed in the references that deal with spacetime algebra
and real Dirac theory are available on line at <http://modelingnts.la.asu.edu>
or <http://www.mrao.cam.ac.uk/˜clifford/>.
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