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Multivector Functions

David Hestenes

In a previous paper [1], the fundamentals of differential and integral calculus on Euclidean
n-space were expressed in terms of multivector algebra. The theory is used here to derive
some powerful theorems which generalize well-known theorems of potential theory and the
theory of functions of a complex variable. Analytic multivector functions on En are defined
and shown to be appropriate generalizations of analytic functions of a complex variable.
Some of their basic properties are pointed out. These results have important applications
to physics which will be discussed in detail elsewhere.

1. INTEGRAL OF THE GRADIENT OF A FUNCTION

A multivector function f defined on a region R in En is said to be differentiable on R if its
gradient ∇f(x) exists in some sense at each point x in R. If f and g are differentiable on
R, then ∫

R
g dv∇f + (−1)n+1

∫
R

(g∇) dvf =
∫
∂R

g da f . (1.1)

This formula still holds if either f or g is a generalized function [2] (distribution), a fact
which often simplifies integration. Here it is used to integrate ∇f .

Let ∇ represent the gradient operating at the point x and ∇′ the gradient operating at
the point x′. If r = x− x′, then

∇|r| = r

|r| = −∇′|r| (1.2)

∇r = n = −∇′r. (1.3)

It can be readily verified that the equation

g(r)∇ = δ(r) (1.4)

admits the particular solution

g(r) =
1

Ωn
r

|r|n , (1.5)

where

Ωn =
2π

1
2n

Γ
(
n
2

) (1.6)

is the area of a unit sphere in En. Moreover, g is the gradient of the scalar function

G(r) =
|r|2−n

(2− n) Ωn
if n 6= 2 (1.7a)

=
1
2π

ln |r| if n = 2 . (1.7b)
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Thus
g =∇G = −∇′G. (1.8)

The function G is a particular solution of Laplace’s equation for a “point source” in En.

∇2G(r) = δ(r) . (1.9)

Now substitute the function g just defined into (1.1). By virtue of (1.4), if x′ is in R,
then ∫

R
(g∇) dv f =

∫
R
δ(x− x′) |dv| if(x) = if(x′), (1.10)

where the symbol i denotes the unitary tangent (unit volume element) of R. Since i−1i = 1,
(1.1) becomes

f(x′) =
(−1)n

Ωni

{∫
R

r

|r|n dv∇f −
∫
∂R

r

|r|n da f
}
. (1.11)

This shows that a multivector function differentiable in a region R of En is uniquely deter-
mined by its gradient in R and its value on the boundary of R.

By using the fact that ir = (−1)n−1ri and defining the normal n to the boundary of the
region R by the equation

i−1da = n |da| , (1.12)

Eq. (1.11) can be written

f(x′) =
1

Ωn

{
−
∫
R
|dv| r|r|n ∇f +

∫
∂R
|da| r|r|n nf

}
. (1.13)

Equation (1.13) implies that every differentiable multivector function is the gradient of
another function. For, by virtue of (1.8),

f(x′) =∇′ϕ(x′), (1.14)

where, if n 6= 2,

ϕ(x′) =
1

(n− 2) Ωn

{∫
R

|dv|
|r|n−2

∇f −
∫
∂R

|da|
|r|n−2

nf + C

}
=

1
(n− 2) Ωn

{∫
R

|dv|
|r|n−2

∇2ϕ−
∫
∂R

|da|
|r|n−2

n∇ϕ+ C

}
(1.15)

and
∇′C(x′) = 0 . (1.16)

The following choice of C eliminates the tangential derivative of ϕ in the second term of
the right of (1.15):

C(x′) =
∫
∂R
|da|

(
∇ 1
|r|n−2

)
nϕ . (1.17)

2



So (1.15) becomes

ϕ(x′) =
1

(n− 2)Ωn

{∫
R

|dv|
|r|n−2

∇2ϕ

+
∫
∂R
|da|

[(
n · ∇ 1

|r|n−2

)
ϕ− 1
|r|n−2

n · ∇ϕ

]}
, (1.18)

a familiar formula from potential theory, although, of course, ϕ is a multivector field here.

2. RELATION TO COMPLEX VARIABLE THEORY

A vector function on E2 is equivalent to a complex function of a complex variable. Let f
be such a function. Taking g = 1 in R, Eq. (1.1) can be written∫

R
dv∇f =

∫
∂R

dx f . (2.1)

So, if
∇f = 0 (2.2)

in R, then ∫
∂R

dx f(x) = 0 . (2.3)

A vector function satisfying (2.2) and (2.3) is equivalent to an analytic function of a com-
plex variable. Equation (2.2) corresponds to the Cauchy-Riemann equations, and (2.3)
corresponds to Cauchy’s theorem. If f is analytic except at poles xk in R, then

∇f(x) = 2π
∑
k

Rk δ(x− xk) . (2.4)

The “residue theorem” is, obtained by substituting this into (2.1):∫
∂R

dx f = 2πi
∑
k

Rk , (2.5)

where, of course, Rk is the residue of f at xk. For the case n = 2, Equation (1.11) can be
written

f(x′) =
1
2π

∫
R
|dv| 1

x− x′ ∇f(x)− 1
2πi

∫
∂R

1
x− x′ dx f(x) . (2.6)

For the special case ∇f = 0, (2.4) reduces to Cauchy’s integral formula.
It should be clear by now that all of complex variable theory can be readily formulated

in the language of multivector calculus.
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3. ANALYTIC MULTIVECTOR FUNCTIONS

When formulated in terms of multivector calculus as in the last section, the notion of
analytic function in complex variable theory admits to an obvious generalization. Moreover,
many theorems and even proofs are essentially unaltered in the process.

A multivector function f is here called analytic in a region R of En if

∇f(x) = 0 (3.1)

for x in R. By the fundamental theorem, this implies the generalization of Cauchy’s
theorem: ∫

∂R
da f = 0 (3.2)

or, since i−1da = |da|n where n is the outward normal,∫
∂R
|da|n f = 0 . (3.3)

If f is analytic in R except at poles xk, then

∇f = Ωn
∑
k

Rkδ(x− xk) . (3.4)

This becomes the residue theorem when written in integral form:∫
∂R
|da|n f = Ωn

∑
k

Rk . (3.5)

Equation (1.13) yields the generalization of Cauchy’s integral formula:

f(x′) =
1

Ωn

∫
∂R
|da| r

|r|n nf . (3.6)

This formula reveals the fundamental property of analytic functions: If f is analytic in R,
its value at every point in R is uniquely determined by its values on ∂R. From (3.6) it
follows that f(x′) can be expanded in a power series. But this is not the crucial property
of analytic functions; many nonanalytic functions can also be expanded in a power series.
Nor is the existence of the complex derivative d/dz a crucial property of analytic functions
in E2. The existence of d/dz is an expression of the fact that the derivative with respect to
a vector is independent of its direction; it follows directly from ∇f = 0 and the limitation
to two dimensions. This feature is peculiar to two dimensions and cannot be generalized.
But the essential properties of analytic functions do not depend on the existence of d/dz;
they are contained in Cauchy’s integral formula, which generalizes quite nicely to (3.6).
Therefore the use of d/dz should be eschewed.

From (3.6) many theorems follow which are straightforward generalizations of theorems
in complex variable theory: Liouville’s theorem, the mean value theorem, the maximum
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modulus principle, etc. The proofs are so similar to well-known proofs based on Cauchy’s
integral formula that they need not be given here.

Other properties of analytic functions can be derived with the help of the fundamental
theorem of calculus. For example, if f is analytic in a region R of En, and if V is a smooth
oriented surface in R with tangent v, then∫

V
dv∇nf = −

∫
∂V
dv f , (3.7)

where ∇nf =∇ivf is the normal derivative of f on V. Using the fact that

∇ =∇v +∇iv ,

the theorem follows immediately from the identity∫
V
dv∇f =

∫
V
dv∇vf +

∫
V
dv∇nf

=
∫
∂V
dv f +

∫
V
dv∇n f .

An obvious corollary of (3.7): the integral of the normal derivative of an analytic function
over any closed surface vanishes.

The notion of analytic function can be profitably generalized beyond what has been
discussed so far. Let V be an oriented surface with tangent v. A function f is said to be
analytic on V if ∇vf = O on V. With this definition the theory of analytic functions can
be developed on curved surfaces in much the same way as it is developed on flat surfaces
in this paper.

The theory of analytic functions of several complex variables can be incorporated into
the theory of multivector functions in the following way. Consider E2n as a “Cartesian
product” of n planes, and let ik be the tangent 2-vector to the kth plane. Note that ik is a
“unit imaginary” for the kth plane:

i2k = −1 . (3.8)

The tangents commute with one another:

ijik = ikij . (3.9)

The pseudoscalar i of E2n can be factored into the product

i = i1i2 · · · in . (3.10)

The coordinate x of a point in E2n can be expressed as the sum

x = x1 + x2 + · · ·+ xn , (3.11)

where, for k = 1, 2, . . . , n,
xk = (ik)−1ik · x = −ikik · x . (3.12)
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A function f(x) on E2n can be regarded as a function f(x1, x2, . . . , xn) of the n variables
defined by (3.1). If f is analytic in a region Rk of the kth plane, then

∇ikf = 0 (3.13)

when xk is in Rk. Let R = R1 ⊗ R2 ⊗ · · · ⊗ Rn be the Cartesian product of the regions
Rk. If x′ = x′1 + x′2 + · · ·+ x′n is in R, then by n applications of (2.6),

f(x′) =
i

(2π)n

∮
∂R1

1
x1 − x′1

dx1

·
∮
∂R2

1
x2 − x′2

dx2 · · ·
∮
∂Rn

1
xn − x′n

dxn f(x) . (3.14)

This is equivalent to Cauchy’s integral formula for an analytic function of n complex vari-
ables. The order of integrations in (3.14) is immaterial because of (3.9). Equation (3.14)
should be compared with (3.6), which for the present case can be written

f(x′) =
(n− 1)!

2πn

∫
∂R
|da| (x− x′)

|x− x′|2n n f(x) . (3.15)

This formula applies because, by (3.1),

∇i1f(x′) +∇i2f(x′) + · · ·+∇inf(x′) =∇f(x′) = 0 . (3.16)
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