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Abstract.  This is the initial report of a long term research program on the design of integrated
computer software systems for physics education specifically, and math-science education
generally. The program is grounded in a theory of instruction which is centrally concerned with
the construction, validation and use of scientific models for objects and processes in the real
world. It aims to develop a detailed theory of software design which supports and coordinates all
aspects of conceptual and computational modeling. The theory is applied to the design of a
versatile Modeling Workstation for learning and doing physics by computer, including the
coordination of both experimental and theoretical activities.

The personal computer revolution confronts physics education with an unprecedented
challenge and opportunity. Microcomputer hardware and software for data collection and
management, for numerical calculation, symbolic manipulation and computer simulation are
developing at a breathless pace. Processor power, network speed and capacity are no longer
barriers to real-time processing of complex data sets and programs in the educational domain.
For most practical purposes, all hardware constraints on software design for personal computers
will be eliminated within the next few years. Thus, the value of computers for physics research
and education will be determined by the available software.

The computer has already become an indispensable tool of physics research, and soon
most physicists will have personal computers with the power of a scientific workstation. This
confronts physics education with the challenge of integrating the computer into the curriculum.
The challenge can be effectively met only by creating educational software which articulates
smoothly with scientific software used by researchers. Most efforts in this direction so far have
achieved only meager success, owing, in large part perhaps, to the lack of a coherent theory for
software design and use. This document reports on an long-term research program, in
collaboration with Ronald Thornton and others, to develop, apply and evaluate such a theory.

The software development challenge presents physics education with an unprecedented
opportunity to improve the pedagogical design of the physics curriculum. Educational research
has already established that computers in the classroom do not enhance student learning without
a carefully designed plan for their use (Thornton & Sokoloff, 1990). In other words, the
pedagogy is responsible for the learning. The computer can enhance the pedagogy, but not
replace it.

Part I of this document reviews a comprehensive theory of physics pedagogy with an eye
toward extending its application from the design of classroom instruction to the design of
educational software. This provides the foundation for a general theory of math-science software
design in Part II. Specific designs are presented for software to facilitate learning and doing
physics. We envision a Modeling Workstation as a universal machine for scientific thinking.

Part III concludes with recommendations for the design of integrated software systems
for science and math education at all levels.
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I.  Modeling Theory for Instructional Design.

Any theory of instruction must answer the questions: "What to teach?" and "How to teach
it?" In answer to the first question, most science educators agree that we should teach students to
"think like a scientist" and acquaint them with " the structure and content of scientific
knowledge." The problem with this two-pronged answer is that it is not sufficiently specific to
guide instructional design. As Einstein once asked, "What precisely is thinking?" Modeling
Theory (Hestenes, 1987, 1992) seeks to supply the answer with the necessary precision. It adopts
the view that making and using conceptual models of real world entities, in a word, that
modeling is central to scientific thinking. Moreover, it reduces the content core of physics to a
small number of basic models interrelated by theoretical principles.

The view that models and modeling are central to scientific research and applications is
widely shared by scientists. Indeed, it has been officially incorporated into Project 2061, an
ambitious program of science education reform supported by the American Association for the
Advancement of Science. However, a close look at the concepts of model and modeling reveals
that they are slippery and multifaceted. They must be thoroughly explicated and analyzed before
they can play a vital role in pedagogical design. That is the main task in the next few sections.

Modeling theory has recently been implemented in a high school physics curriculum and
classroom tested with noteworthy results (Wells et al., 1994). Details need not be discussed here,
because implementation in software is necessarily quite different, but some common conclusions
from educational research apply to both: First, emphasis should be placed on student learning
rather than any act of teaching. The primary function of the teacher is to create an environment
which enhances student learning. Second, design of this environment depends critically on the
available modeling tools. Computers have the potential for enormous advances on both counts:
Computer environments can be exceptionally engaging and versatile. Moreover, as shown in Part
II below, the computer enables us to create a host of new modeling tools with unknown potential
to enhance student learning and scientific thinking. Educational research on how to use such
tools effectively in instruction must await their software implementation. For that reason we set
aside, for the time being, the question of "How?" to concentrate on "What? to teach."

1.1  Why modeling?
Our emphasis on models and modeling in the design of physics instruction and software

is motivated by two general claims:
(1.) By engaging students in modeling activities, their classroom experience is aligned
with the practice of working physicists.
(2.) By focusing on basic models, the structure and coherence of scientific knowledge is
made more evident to students by making it more explicit.

Justification for these claims comes from the study of scientific practice. We cannot do better
than examine the work of Newton, who was the first to engage in systematic mathematical
modeling (Hestenes, 1992). He was quite explicit in describing his modeling approach, though
the term "modeling" was not in his vocabulary.

Reflecting on his research method in the preface to his Principia, Newton remarked that
boils down to this: From the motions of material bodies infer the forces, and from the forces
deduce (and so predict) their motions. This describes the essential core in a cyclic process of
developing and deploying mathematical models. Call it the Newtonian Modeling Cycle. A more
detailed schema for the cycle is shown in Fig. 1.11. Let us follow Newton in a run through the
cycle. In accord with Fig. 1.11, from the best available data supplied by naked-eye observations
of planetary motion, Kepler extracted several regularities codified by his three laws. Together,
these three laws comprise a kinematic model of planetary motion. From this model, Newton used
his laws of motion to infer a gravitational force modeled by an inverse square law. Thus, he
arrived at a single causal model of planetary motion. From the causal model he was able to
derive all three of Kepler's laws and thus explain the regularities observed in the first place.



3

Fig. 1.11
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The Newtonian modeling cycle is generalized in Fig. 1.12 to a generic modeling cycle
characterizing the cyclic interplay between constructing models to characterize systems in the
real world and empirical evaluation of the models. An explanatory model differs from a
descriptive model of the same system in positing that the system posses some property that has
not been (or perhaps cannot be) directly observed. Such a property nevertheless plays a role in
generating observed regularities. If the property is described as an interaction between objects,
we have a causal model (a particular kind of explanatory model). In the causal models of
Newtonian mechanics the unobservable properties are forces.

The modeling cycle, as described in Fig. 1.12, contains an inherent epistemological
presumption, namely, that we come to know real objects (their properties and processes) only by
constructing models to represent them in the mind. Accordingly, a scientific theory is a kind of
"cognitive window" through which we "view" real objects by constructing conceptual models.
This epistemological stance is aptly called constructive realism by Ronald Giere (1988).

The modeling cycle (Fig. 1.12) should be compared with the perception-action cycle
depicted in Fig. 1.13. The similarity is not accidental. The latter characterizes the interaction of a
person with objects in a real world situation. Sense data is processed by the nervous system to
produce a perceptual representation (an internal descriptive model, if you will) of the situation.
Next, as a plan for effective action, a predictive mental model is generated. Execution of the plan
with action changes the real world situation, producing new sensory data, and the cycle repeats.
Of course, in every person this kind of feedback cycle is operating continuously in real time to
help control behavior.

The Modeling cycle in Fig. 1.12 is a purely conceptual cycle. However, in analogy with
the perception-action cycle, it has a variant in which an explanatory model is employed to plan
experiments (actions!) on natural systems and predict regularities to be observed. Note that a
prediction can be regarded as an explanation of facts which have not yet been observed.
Therefore, predictive and explanatory models are not different in kind; their different names
express only a difference in their intended use.

The modeling cycle describes a coordinated sequence of cognitive processes for matching
conceptual models with real systems and situations. It has many variants, depending on the
intended purpose of the modeler. These are discussed in Section 3 as part of a more complete
account of the modeling process.

Since the modeling cycle is fundamental to the way science works, it should have a
prominent place in instructional design. An instructional cycle which guides students though a
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Fig. 1.12
Generic Modeling Cycle
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classroom adapted version of the modeling cycle has been implemented and evaluated with
excellent results (Wells et al., 1994). After a few passes through the cycle, students have learned
enough about scientific inquiry to conduct systematic investigations on their own. Of course,
success of the classroom implementation depends heavily on the details about models and
modeling that have been incorporated.

When the modeling cycle is built into instruction, students learn how to coordinate the
complex cognitive processes of modeling to achieve definite goals (Wells et al., 1994). This is an
antidote for the fragmentation of procedural knowledge that results from teaching specific
cognitive skills in isolation from others. In a similar way, focusing instruction on models helps
students achieve a coherent understanding of science content knowledge and so facilitates its use
in new situations. This assertion raises important questions about the relative roles of models and
theories in instructional design.

A common view of scientific knowledge is that is hierarchically organized, and it is
applied to solve problems in physics by reasoning deductively from general principles to specific
empirical predictions and other conclusions. From this view theory is primary and models are
peripheral if they are recognized at all. A contrary view is that scientific knowledge is organized
primarily around models with theory playing a secondary role (Giere, 1988). For the purpose of
instructional design, there are good reasons to adopt the second view. The first view does not
give models their due. The second view admits a clean distinction between the roles of "model"
and "theory" in scientific knowledge: The content of a science is a population of validated
models; the structure  of the science is a system of theoretical principles interrelating the models.
In other words, models comprise the content while theory defines the structure of scientific
knowledge. Models are primary to theory in the sense that there is no structure without content.

There are both epistemological and cognitive reasons for emphasizing models ahead of
theory in instruction.

Epistemological reasons:
(1) Models are specific; theory is generic. Models are more salient to students than
theoretical principles, because they refer directly to individual concrete objects in many
cases.
(2) Models are testable; theory is abstract. Theoretical principles are empirically testable
only through instantiation in models. In other words, theory relates to the real world only
through models.
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Fig 1.13
Perception-Action Cycle
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(3) Models are basic units of coherent scientific knowledge. The coherence and
completeness of a theory is evident only in its models. For example, in constructing
particle models with Newtonian theory, all of Newton's must be applied in a coordinated
(coherent) way. Aside from particular models, there is no way to assess the relation of
Newton's laws to one another.

Cognitive reasons:
(1) Abstraction: Theoretical principles are best learned by abstraction from models,
because models supply context for the principles. In other words, models provide a bridge
between theory and reality. Failure to build such bridges contributes to serious
misconceptions about physics, as in the pseudoscientific field of energetics, which reifies
the theoretical concept of energy into a basic stuff of the universe.
(2) Categorization: Research in cognitive linguistics shows that people naturally classify
objects by resemblance to mental prototypes rather than by identifying a unique set of
properties (Lakoff, 1987). "Natural classification" is therefore fundamentally different
from "scientific classification." Models can bridge both schemes by serving as prototypes
for natural classification by pattern matching and as exemplars for scientific classification
by properties.

This completes our justification for the primary focus of Modeling Instruction. In summary, a list
of instructional objectives is given in Fig. 1.14.

2. What is a model?
This discussion of models summarizes and extends that of Hestenes (1987, 1992), where

additional details can be found. Although there is a great variety of models in science, they share
a common set of characteristics which reflect common characteristics of all natural systems in
the real world. Fig. 1.21 lists the general characteristics specified in most, if not all scientific
models.

The model with its characteristics is a representation of the system and its characteristics,
including its parts and their properties. Let us run through the list of specifications in Fig. 1.21:
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Fig. 1.14

Primary Objectives of Modeling Instruction

● To engage students in understanding the physical world by constructing
and using scientific models to describe, to explain, to predict and to control
physical phenomena.

● To provide students with basic conceptual tools for modeling physical
objects and processes, especially mathematical, graphical and diagrammatic
representations.

● To familiarize students with a small set of basic models as the content
core of physics.

● To develop insight into the structure of scientific knowledge by
examining how models fit into theories.

● To show how scientific knowledge is validated by engaging students in
evaluating scientific models through comparison with empirical data.

● To develop skill in all aspects of modeling as the procedural core of
scientific knowledge.

I.  The first step in specifying any model of a system is to "model" its organization with a
system schema consisting of names or icons designating constituent parts and connectivity of the
system as well as relevant connections of the system with objects in the environment (external
agents). The system schema may be specified by an "organization chart" or with a diagram, as in
Fig. 1.22.

II. The second step is to represent the basic properties of the system and its parts by
"property variables" (or descriptors). Intrinsic properties are represented by descriptors of two
types: object variables and state variables. Object variables are parameters of the model with
fixed values (such as mass, charge and inertia tensor in mechanics). State variables (such as
position and velocity in particle mechanics) represent intrinsic properties which may change with
time. Interaction variables represent properties of the connections. In mechanics models they are
typically forces or potentials. In other models they may represent flows of material or even
information.

III.  System structure is specified by interaction laws which relate interaction variables to
state variables. Examples are Newton's law of gravitation and constitutive equations such as the
perfect gas law. Note that this concept of system structure is distinct from and dependent on the
system's organization specified in I . The organization specifies which objects are interacting
(connections), while the structure specifies how they interact. It follows that the system has an
external structure characterizing interactions with agents in the environment.

IV.  System behavior (temporal structure) is specified by laws of change which relate
change in state variables to interaction variables. Examples are Newton's second law in particle
mechanics and Euler's law for the rotational dynamics of a rigid body.

Model specification is usually distributed over several representational modes: words
equations, diagrams, etc.. Various graphic representations are shown in Figs. 1.22 and 1.23, with
a rough classification according to their roles in model specification. The schema in Fig. 1.22A
describes the organization of a system with three component parts interacting with three agents
in
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Fig 1.21
Model specification

I.  Organization
       ●  composition
       ●  environment
       ●  connectivity

II.  Basic Properties
        ●  intrinsic

        ●  interactive

III. Structure  (internal/external)

IV. Behavior  (temporal structure)

System Schema
      ●  (internal) constituents
      ●  (external) agents
      ●  connections

Descriptors
       ●  object variables              e. g.  m, q, I
       ●  state variables                 e. g.  x, v
       ●  interaction variables       e. g.  F, V

Laws of interaction          e. g. F = GmM/r2,
                                                   PV = nRT

Laws of change            e. g. mv̇ = F, L̇ = T

the environment. A map, as in Fig. 1.22C, describes geometric properties of the system. Note
that Fig. 1.22A is a schema for the system of three blocks in Fig. 1.22C interacting with ramp R,
string S and earth E. The interaction map in Fig. 1.22D describes the structure of a two particle
model of the system in Fig. 1.22C.

Schema diagrams like Fig. 1.22A are never used in mechanics, but they appear with
various guises in other places. Note, for example, that the "electrical circuit" diagram in Fig.
1.22B is a schema for a four-component system with special icons to indicate a model type for
each part. It may facilitate student learning and understanding to introduce a unified system for
representing system schemas in all parts of physics.

Likewise, it may be beneficial to classify and standardize the various modes for
representing system behavior. Fig. 1.23, for example, illustrates two different modes for
representing change of state.

It is often convenient to conflate the symbolic representation with the model for a system,
but it is essential to separate them sometimes to avoid profound mistakes. It must be recognized
that a model meeting the specifications of Fig. 1.21 is typically distributed across several
symbolic representations, as suggested in Fig. 1.24. In other words, complete understanding of a
model requires coordination of multiple representations. Each representation has its own
strengths and limitations. Often, two representations represent the same information in different
forms (as a graph or a spread sheet, for example). At the same time, each may contain
information that the other does not.

It must also be remembered that the various symbolic representations in Fig. 1.24 have
significance only when there is a brain to interpret them – a brain in which they are interpreted in
a mental model  of the system. Note that the mental model is the result of the brain interacting
with the symbolic representations, so there would be no model without both the symbols and the
brain.

             Object / system              Model
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Fig. 1.22
Representations of System Organization and Structure
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Fig. 1.24. Multiple representations of a physical system and its model.

The symbolic representations induce different mental models in everybody, student and
scientist alike (Redish, 1994), so how is it possible to speak of a unique objective scientific
model? To answer that important question, note that structures on the left side of Fig. 1.24 – the
system, the symbolic representations and the ways they are related – are objective, in the sense
that they are open to inspection by anyone. Structures on the right side of the figure – mental
model and its relations to the symbols – is subjective, so not open to inspection by others.
However, they can be inferred to some extent from the way the symbols are used. Different
individuals can negotiate the meaning of symbols by considering different ways to use the
symbols until agreement is reached on how to use them. Though each scientist has his/her own
mental model of a given system, they can nevertheless reach a common understanding of how to
use symbolic representations for it. This common understanding characterizes a conceptual
model of the system, accessible, in principle, to everyone and independent of idiosyncrasies in
the mental models of individuals. Scientific models meeting the specifications of Fig. 1.21 are to
be understood as conceptual models in this sense.

With the understanding that all scientific models are "conceptual," we can safely omit
that adjective when speaking about them. A host of other adjectives are often used to
characterize or differentiate model types, so a brief catalog may be helpful to clarity the
distinctions they express.

(1) Property type. Models differ widely in the properties they attribute to real systems.
Natural systems may be classified as physical, chemical, biological, economic, etc., and their
corresponding models are given the same classification. Actually, the same system may be
modeled as one type or another, depending on the objectives of the modeler. Any system, for
example, can be modeled as a physical system, for every system has physical properties while
most do not have biological properties. Each scientific theory is distinguished by a characteristic
set of properties it models. Mechanics, for example, models only those properties of material
objects which are relevant to motion.

(2) Structural type. Models differ in the structure they attribute to systems. According to
Fig. 1.21, they can differ in object structure or behavioral (temporal) structure. Models which
emphasize the latter over the former are called "process models." Typically, a process model is
aimed at modeling change in a single property variable; for example, the storage, flow and
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Fig. 1.25
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dissipation of energy. Process models are often partial (or incomplete) models, because they
ignore relevant object structure of the underlying systems. This sometimes leads to paradoxes or
mistakes, as in the case of energetics mentioned earlier.

With respect to object structure, models can be simple or complex. A simple model
attributes no internal structure to the object; as, for example, a particle model in mechanics or a
"black box" model in engineering. Such models are often said to be "structureless," but, in the
sense defined earlier, a particle has external structure if it interacts with something else. Only a
"free particle" lacks both internal and external structure. If a model has no external structure,
then it (or the system it represents) is said to be closed. Otherwise, it is said to be open.

In Newtonian mechanics, every material system can be modeled as a system of particles.
In physics generally, all models can be classified structurally as particles or fields or some
combination of the two.

(3) Intended use. Models may be described, according to their intended use or purpose, as
descriptive, explanatory, predictive, prescriptive, etc.. The import of the first three adjectives has
been discussed already. A prescriptive model is intended as a plan for constructing a system
(such as instruments or apparatus for experiments) or for controlling a system (as in the design
of an experiment). The variations are legion. Prescriptive models are a prime concern of
engineering.

(4) Representational mode. Models are sometimes described by the representations used
to construct them. One may speak of a graphical model, for example, which has been
constructed by curve fitting to empirical data. Again, it is worth emphasizing that the actual
graph (or graphical representation) must not be confused with the graphical model needed to
interpret it (Fig. 1.25), though it is usually convenient to suppress the distinction. Also, note that
graphs usually appear in concert with other representations, such as an algebraic equation for the
graph, so the term "graphical model" should be used loosely.

The term "mathematical model" is widely used and abused in science, especially in
physics, so clarification of its meaning is important. Strictly speaking, it means that the structure
and behavior of the model is characterized by mathematical equations, so that some or all of the
property variables have quantitative representations. It must be recognized that other
representations are needed for complete specification of the model, in particular, to specify its
interpretation. On the other hand, for the purpose of analyzing structure, it is convenient to
separate mathematical models from their interpretation and regard them as abstract models.
Indeed, abstraction is often taken for granted when speaking of mathematical models. This kind
of abstraction is an enormously powerful modeling device, for the same abstract model can be
used to characterize the structure of a great variety of systems simply by assigning different
interpretations to the descriptors. For example, the harmonic oscillator is an abstract model
which can be variously interpreted to model the motion of a mass on a spring or the flow of
charge in an electrical circuit.

(5) Embedding medium. To have concrete existence, a model must be embedded in some
concrete medium (or system). Graphical and algebraic representations by marks on paper are
only partial embeddings, because a person is needed to interpret them. A complete embedding of
a conceptual model in a concrete medium is called a realization of the model.

It has already been noted that conceptual models have realizations as mental models, but
that is not the only way they can be realized. When a concrete system is built and operates
according to a prescriptive model, it is a realization of the model. Strictly speaking, any concrete
system that is accurately represented by a conceptual model is a realization of the model.
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However, the term "realization" is not often applied to a system unless it was intentionally
constructed to meet the specifications of its model.

Two physical systems characterized by a common abstract model have analogous
structure/behavior and are said to be analog models of one another. This has practical
significance, as when an electrical circuit is constructed to model a mechanical system or vice-
versa. Analog models representing real time behavior, as in this case, are called simulations or
working models. Similarly, scale models are often constructed to represent geometrical structure,
especially of large or small systems.

A computer model is the realization of a conceptual model in the computational medium
of a computer. Because computer models are so easy to construct and manipulate in any
representational mode, and computers have unsurpassed powers for computation, visualization
and simulation, realization in computers is sure to become the dominant mode for modeling in
science, if, indeed, it is not so already. The same can be confidently predicted for science
education.

1.3  What is modeling?
Modeling is fundamentally a cognitive process, because its primary purpose is the

making and using of conceptual models. It is not purely a mental process, however. The
perception-action cycle (Fig. 1.13) is involved: in constructing external representations on the
one hand, and in relating them to real systems on the other.

Modeling has many variations with different purposes. These variations could be (and
usually are) regarded as independent activities, but that disguises their common primary purpose
and their conceptual elements. To emphasize their underlying unity, the various modeling
activities are characterized below as variations of a single modeling process, differing mainly in
their emphasis on one or another of the component processes. This unified approach is made
possible by the unified concept of model presented in the previous section.

The modeling process is schematized in Fig. 1.31. Let us run through a general
description of its components before considering its variations. Modeling often begins with a real
world situation, which may be presented directly in experience or indirectly in the form of data
and/or a verbal report, etc.. The first step in modeling is to identify the system to be modeled,
including its relevant properties (identification of variables). From this a system schema is
constructed and property descriptors are selected. Then a complete model (meeting the
specifications of Fig. 1.21) can be constructed or selected and adapted from a collection of
available models.

Model construction or selection is greatly influenced by the intended use or purpose of
the model, and there is a variety of purposes that govern variations of the modeling process. The
assumed purpose, for example, governs the choice of variables and the level of detail in the
model. Sometimes only a crude model in desired. For other purposes, a whole family of models
may be appropriate to characterize the system in successive levels of detail. Often the purpose is
to answer some question about the system.

Empirical determination of the model's validity is achieved by comparing model with the
system in the original situation. Model validation can be as complex as designing and performing
an experiment or as simple as checking the answer to a problem. Validation of the model
provides justification for conclusions about the system and situation which are drawn from the
model. The extraction of conclusions from the model requires analysis of the model's structure
and behavior as well as considerations of validity.

The modeling process as just describe can be decomposed into four major components or
modes: model construction, analysis, validation, and deployment (Hestenes, 1987). Each mode
can be a complex process in itself and is often pursued independently, with only loose
connection to the other modes. Ultimately, however, science requires coordination of all the
modes.
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Fig. 1.31
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A major objective of physics is to develop a repertoire of validated models which can, in
principle, be deployed to account for any physical situation. Model development, therefore,
requires the coordination of model construction, analysis and validation activities. Development
of validated basic models, such as models for the electron, viscous fluids, semiconductors and
lasers, is a long and complex undertaking involving both theoreticians and experimentalists. All
of the modeling modes, however can be activated at various levels of complexity, some of which
are suitable for students. Let us consider each one briefly in turn.

(1) Model construction. Models may be constructed to meet either empirical or
theoretical specifications. Two primary purposes for model construction are (a) to account for
observed phenomena, and (b) to elucidate and evaluate implications of a theory. In the first case,
modeling begins with an empirical situation, as already described in connection with Fig. 1.31.
The second case may be regarded as beginning with a theoretical situation (a thought
experiment, for example), and it often ends with an experimental test of the theory.

There are no hard-and-fast rules for model construction in every case, but theories
provide strict guidelines in their scientific domains (Hestenes, 1987,1994). Moreover, the model
specifications in Fig. 1.21 provide criteria for full specification of a model.

(2) Model analysis is concerned mainly with extracting information from a model. For
mathematical models this is often characterized as deductive inference. Inference from models
distributed across multiple representations is called heterogeneous reasoning by Barwise and
Etchemendy (1991), who advocate generalizing the concept of deduction as information
extraction to cover this case.
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Model analysis for its own sake investigates ramifications of the model with no particular
application in mind. One objective is to discover conservation laws and other invariants of the
model. Another objective is to "understand" chaos in nonlinear models. The analysis of simple
nonlinear models is sufficiently complex to be a full time professional occupation.

When the model has been created for a definite purpose, analysis is directed at
determining how or how well the model can fulfill that purpose – by extracting a prediction from
the model, for example. Conclusions may be affected by information about the validity of the
model, so that should be considered in the analysis.

(3) Model validation is the process of assessing the validity of a model, that is the
adequacy of the model to characterize a real system. The relation of the model to the system is
one of similarity, specifically similarity with respect to structure and behavior (Fig. 1.21).
Therefore, a model's validity is an assessment of similarity. This assessment has both qualitative
and quantitative aspects. Assessment of the model's system schema and choice of descriptors is
qualitative. Comparisons of functional relations among the descriptors (laws) with empirical data
can be made quantitative. The result is sometimes called "goodness of fit" or accuracy of the
model.

Full assessment of a model's validity includes an evaluation of its fidelity. That involves
an account of relevant features of the system and its environment which are neglected in the
model followed by an estimate of their effects on the accuracy of the model. Quantitative
estimates of these effects are often made by extending the model to include these features. Thus,
a family of models with varying degrees of fidelity may be constructed for a single system. The
fidelity required of a model depends on its purpose. For some purposes a simple (low fidelity)
model is adequate and therefore preferable to avoid unnecessary complexities. For high accuracy
a high fidelity model may be needed.

Models are often intended to represent (or define) a whole class of (real or possible)
systems with different members distinguished by different values for the parameters of the model
(mass, for example). In other words, the model is a model type. (Although, for cognitive reasons,
it convenient to think of the whole class of models as represented by a single exemplar.) In this
case, model validation includes determining a domain of validity for the model, that is,
determining the range of parameters and environmental conditions for which a valid model of an
individual system is obtained.

When a well-validated model type is applied to model a specific system, validation is
reduced to determining whether it lies within the domain of validity. A direct empirical test of
validity is not necessary, though it may be advisable as a reality check! – especially when there is
some doubt about the domain of validity or the similarity match of the model to the system.

It is important to recognize that the relation of models to the systems they are supposed to
represent is not an all or none affair, so it cannot be represented by the dichotomous logical
relation of truth or falsity. Rather, the relation is one of similarity in some respects and to certain
degrees. Validation of the similarity relation is a kind of pattern matching, and the fit can never
be better than the limits of experimental error. Validity is sometimes described as "approximate
truth." But "truth" is the wrong concept here. "Verisimilitude" is more like it.

One version of the validation process is called hypothesis testing. From the viewpoint of
modeling theory, a hypothesis is a claim of similarity between models and real systems. (Giere,
1988). It must be understood that such a claim always entails qualifications, namely, that the
similarity holds in some respect and to some degree. Unlike a model, a hypothesis is a linguistic
entity, so it can be true or false. When a hypothesis has been verified, it is said to be a fact. When
the type of similarity is a mathematical relation among state variables, it is called a law. Note
that the law is not the fact, that verification of the hypothesis does not turn it into a law, as is
often asserted. Rather, the fact is that the structural property of the model described by the law is
similar to a structural property of the system to some degree. Like the model, the law can be said
to be valid, but not true. Like models, each law has a limited domain of validity, which is
sometimes limited to that of the model which "carries" it. The same can be said of theories, since
they can be expressed as systems of laws. Theories are validated only by validating their models.
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(4) Model deployment is the use of a given model to achieve some goal. Therefore
various modes of model deployment can be classified according to purpose. These include
description, explanation, prediction, planning design and control. The crucial role of models in
all these activities is often overlooked. The point is best made in the case of "explanation," for
explanation is the hallmark of scientific understanding.

The claim here is that every scientific explanation is based on a model, though often
implicitly, and, the more detailed the explanation the more explicit the model. For example, a
causal explanation of an event is often made by simply identifying a relevant mechanism and an
agent, which are crucial ingredients of a causal model. For a complete explanation of the event
the conditions for its occurrence must be isolated, and this amounts to specifying a complete
causal model for the situation.

Causal models provide causal explanations for laws as well as for facts or events. A
descriptive law represents empirical patterns which are observed under certain conditions.
Kepler's laws are prime examples. As already noted, Newton explained these laws by deriving
them from a causal model. The causal model itself can be derived (or constructed!) from
Newton's laws plus subsidiary conditions, so it can be said the Newton's laws explain Kepler's
laws by deduction. However, all explanations from Newton's laws proceed via a model, as in this
case.

Explanations can be classified into two types: causal and structural (or reductive). As
already noted, causal explanations require identification of a mechanism and an agent as a first
step in constructing a causal model for the situation in question. Structural explanations explain
"emergent" properties of an object in terms of its composition and structure. A prime example is
explanation of the periodic table in terms of atomic structure.

(5) Problem solving in physics can be construed as a modeling process, but it does not
involve anything new about modeling. It is mentioned here to point out that it can be reduced to
one or another of the modeling modes. In fact, training in problem solving can be made
systematic by classifying problems according to the models and modeling modes involved.

Students learn about modeling in physics courses primarily from solving textbook
problems. Such artificial exercises often lead students to a distorted view about what physicists
do. By making the modeling in problem solving explicit, the similarity to scientific practice is
more obvious. Moreover, the structure of problem solving is clarified. The role of models can be
made explicit by teaching students that the solution to a problem is a model, not just a number or
an equation. The model contains the answer to any question posed in the problem. The Modeling
schema in Fig. 1.31 provides a guide to systematic problem solving. In the typical textbook
problem the situation is presented with a verbal description and the purpose is predetermined by
a question. The solution can be obtained by following the modeling process as already described.

II.  Modeling Software Design

The modeling theory described in Part I is now applied to the development of a
comprehensive theory of math-software design. Implementation of the design is underway in
collaboration with Professor Ronald Thornton of Tufts University. The complex technical
problems of programming the design are not addressed here.

2.1 Traditions of Math-Science Instructional Software Development
We identify three traditions of math-science instructional software development

distinguished by the professional specialties of their developers. The first is Computer-Assisted
Instruction (CAI), and most of its developers are experienced teachers or educational
researchers. The second tradition, known as Intelligent Tutoring Systems (ITS), has been
developed by researchers in cognitive psychology, artificial intelligence and computer science.
The third category consists of scientific software adapted to instructional purposes by scientists
and mathematicians, so we might call it Adapted Scientific Software. We discuss each category
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in turn and relate them to our vision of math-science software design. A valuable set of design
principles for educational computing derived from the CAI and ITS traditions is collected and
illustrated in (Larkin and Chabay, 1992). We accept those insights and focus on weaknesses in
the traditions, which we hope to rectify.

Most CAI programs are designed to teach specific topics in science or mathematics at the
primary or secondary grade levels. Though we are developing more advanced software, we need
to be cognizant of pedagogical insights derived from testing software at introductory levels. Most
design principles for good instructional software apply at all levels of sophistication, but they are
best investigated at the lower levels where pedagogy is most critical.

Over the last two decades a vast literature on CAI has accrued, but much of it is of poor
quality or severely hampered by hardware and software limitations of no interest in principle.
Most CAI programs, especially in the earlier days, have an algorithmic structure intended to
promote skill acquisition by drill and practice. We believe that this emphasis is misplaced.
Algorithmic structure derives from a more fundamental structure, the structure of symbolic tools
essential to the subject in question. The design of a tool depends on how it is to be used; hence,
software to promote skill development should be secondary to tool design. Accordingly, our first
general principle of software design is:

I. Design tool software first!

Precisely what constitutes a good tool is for experts in the subject area to decide. However, subject
expertise alone is not sufficient background for tool software design. The computer opens up new
possibilities for symbolic tools that experts have only recently begun to appreciate (Kaput, 1992).
This is a critical area for research in software design. Recognition of that fact has been growing
among educational software developers in the last few years, and a number of tool-centered CAI
software packages have been published recently. As exemplars, we mention the Geometer's
Sketchpad (Jackiw, 1992). and the Geometric Supersupposer (Schwartz & Yerushalmy, 1993).
However, the excellent geometry tools in these packages need to be integrated into a more
complete Geometry Tool Kit in order to be useful in physics. We describe such a kit in Sec. 2.4.

The power of science derives from its tools, both instrumental and symbolic, which have
been forged by scientists and mathematicians. To transfer that power to students, therefore, the
first task of science education is to make the tools available. The students need authentic tools, of
the same basic design as tools which scientists use. Unfortunately, the tools imbedded in most
science curricula and software are poorly defined. Students (not to mention teachers) cannot
distinguish the tools from the objects of study, or worse, the tools they are offered are mere toys,
so the science is trivialized. The deliberate design of authentic tool software is the first step in the
design of good educational software.

Authentic tools are essential to science education, but they are not sufficient. Science is
organized into theories which coordinate the use of tools and the accumulation of factual
knowledge. Accordingly, as our second general principle of software design, we assert:

II. Authentic scientific tools should be integrated into systems software
    which incorporates the structure of scientific knowledge.

The design of such systems software is a central problem of our research program.
The shift from algorithmic to tool-centered software is in accord with a profound change

in philosophy sweeping the educational research community in recent years. According to the
emerging constructionist philosophy, knowledge is not transmitted from teacher to student;
rather, it must be reconstructed by each student individually. The very term "instruction" is
therefore something of a misnomer, because it suggests that something is done "to the student"
rather than "by the student." The primary job of the teacher is not to transmit information but to
create and manage an environment where students learn for themselves. Likewise, the right
purpose of instructional software is to create a computer environment that empowers students to
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learn. The challenge is to design the environment so that students learn the right things as they
interact with it.

Now we turn to ITS computer programs. Such programs aim to teach explicit models of
procedural knowledge in well-defined task domains. Students are first engaged in reasoning
tasks, then their actions are compared with a model of expert reasoning, and they are supplied
with feedback to help them improve. Despite dedicated efforts by many smart people, the ITS
tradition has achieved only modest success. This can be attributed to limitations in ITS designs.
Our analysis of shortcomings of CAI software applies here as well. ITS models of scientific
knowledge are too narrowly defined by the rule-based structure they presume. Moreover, no one
knows enough yet about cognition and learning to build credible models of expert performance
into tutorial software. We know a lot more about scientific tools and systems. Accordingly, as
our third general principle of software design, we assert:

III. Tutorial software should subserve learning and use of tool and system software.

This is to say that tutorials should play a peripheral rather than a central role in instructional
software design. Complete separation of tutorials from the tool and system software is an
important feature of the global software design. The tool and system software implicitly define
the core knowledge to be taught. The central problem of instruction is thereby reduced to
teaching students to use the math-science tools with skill and insight. The design of tutorials to
address this problem remains an open issue for instructional research. A variety of approaches,
from "intelligent tutoring systems" to computer-assisted "cooperative learning," need to be
studied. We do not know enough about student learning to make definitive recommendations.

In seeking criteria for authentic software designs, we examine the ways computers are
used by scientists. Scientific computer workstations are generally of two kinds: empirical or
theoretical. As an empirical workstation, the computer functions as a universal interface with
laboratory instruments of every kind; they collect, process and display complex data from
experiments and observations. As a theoretical workstation, the computer is used for complex
calculations and simulations to explore the implications of mathematical models. Although
empirical and theoretical uses of computers are usually separated in scientific research today,
there is ample reason to coordinate them in a single scientific workstation design, since
consistency between theory and empirical data is an ultimate objective of science. Thus we
arrive at another general principle of authentic software design for student use:

IV. Empirical and theoretical functions should be sharply distinguished yet 
coordinated.

Given the indisputable value of computers in scientific research, physicists and engineers
have recently started adapting scientific software designs to instruction. In the theoretical
domain, most of the effort has gone into creating computer simulations of mathematical models
or adapting mathematical software packages for student use. One of the most ambitious physics
simulation packages is the heavily marketed Interactive Physics (1990). Its deficiencies are
typical of software in this tradition. It exhibits insensitivity to cognitive and pedagogical issues
and shows no trace of familiarity with CAI and ITS research. In short, it suffers from the lack of
a theory of software design.

The first step in adapting scientific software to instruction is to recognize that the scientist
possesses tacit knowledge essential to operate and interpret the software. For student use, this
knowledge must be explicitly built into the software or supplied in an instructional setting. The
explication of tacit scientific knowledge is a major task in the theoretical component of our
research program. As explained in Part I, it leads to the general conclusion that the tacit
knowledge is mainly about the structure of mathematical models and the processes of modeling.
Thus, the tools inherent in scientific software are modeling tools, and the systems are modeling
systems. Modeling is the main activity of scientists. It is a complex activity with many
ramifications.
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The greatest deficiency of simulation software like Interactive Physics is that it fails to
explicate (i.e. make explicit) the structure of the underlying model that generates the computer
animations. Beyond that, it hardly begins to help students develop coordinated modeling skills.
For these reasons, Interactive Physics cannot be expected to improve physics instruction
appreciably.

Recognizing that the main function of scientific workstations is to support the empirical
and theoretical aspects of modeling, is to see them as modeling workstations. We submit that
their designs are greatly improved by displaying their modeling functions explicitly on the
computer screen. Futhermore, most modifications needed to make scientific software accessible
to students will be valuable to scientists as well. We foresee a narrowing gap between student
and scientist workstations. Accordingly, we recommend developing a progression of student
workstations with increasingly sophisticated authentic modeling tools and systems leading to a
full-fledged Modeling Workstation for research scientists.

2.2.  The Modeling Workstation Vision
Modeling theory suggests that the main purpose of math-science software should be to

facilitate modeling activities. Applying the general design principles of the preceeding section,
we propose to develop an integrated system of math-science software modules to fulfill this
purpose. We call the computer implementation of this software system a Modeling Workstation.
The workstation should contain, in a flexible and accessible fashion, all the procedural, factual
and theoretical knowledge needed for any modeling activity in physics, from data collection and
analysis to mathematical modeling and simulation.

We envision a computer workstation with two complementary functions: First, to act as a
conceptual environment which students can actively explore to discover the rich structures of
physical theories. Second, to serve as a tool, indeed, as a machine for developing mathematical
models and deploying them to account for real physical data and phenomena.

Beyond this, we envision a progression of Modeling Workstations with homologous
structure suitable for student use at progressively more sophisticated levels of scientific
competence. Each workstation consist of modules organized into three separable "shells":

I. Modeling tools, tool kits and stockrooms
II. Modeling Systems
III. Applications

Here we describe the general structure and function of the shells. Fuller details about the first
two shells are given in subsequent sections.

The tool shell contains the core knowledge of modeling tools and materials. The tools are
of two general types: (1) Empirical tools for collecting, analyzing and displaying empirical data.
(2) Theoretical tools for formulating and analyzing conceptual models, including alphanumeric
and graphical representations. The tools are designed to be authentic scientific tools; therefore,
students will have a better opportunity to develop authentic scientific thinking skills as they learn
to use the tools.

The tools are organized into self-contained tool kits that generate coherent conceptual
structures. Each tool kit is accompanied by a stockroom of conceptual models and materials
which can be constructed or otherwise manipulated with the tools. To promote software
portability, tool shells are self-contained and separable from the system and application shells.
Stockroom inventories can be expanded indefinitely, and tool kits are graded by complexity and
sophistication. Insofar as possible, different tool kits are designed to be compatible, so that they
can be combined and coordinated in complex tasks. The most sophisticated tool kits are suitable
for scientific workstations, but even at that level simpler tool kits are sometimes useful.

The system shell organizes scientific knowledge to facilitate its use in every kind of
modeling activity. The primary objectives for its design are: (1) that students learn about the
structure of scientific knowledge as they explore the system shell and use it in modeling; (2) that
students learn basic procedural knowledge of science from the ways in which the system shell
coordinates the use of modeling tools. Although the system software contains some automated
algorithms, it is mostly interactive, encouraging a dialogue with the user. The system shell
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contains and coordinates both generic and specific components: Modeling in each scientific
domain involves specific techniques tailored to the subject. Modeling also involves generic
techniques, such as systems theory, systems analysis, or matching models to data, which are
applicable to all sciences. Generic modeling techniques form a nucleus of transferable cognitive
skills for the entire K-16 math-science curriculum. This has implications for curriculum software
design discussed at the end of this paper.

The modeling tool and systems shells comprise the core of the Workstation. The
applications shell contains everything else: tutorials, simulations, games and any other imported
applications consonant with the design and purpose of the Workstation. Tutorials are intended to
help students learn how to apply the core knowledge in the tool and system shells; their use will
diminish as user modeling skills improve. With the establishment of universal standards for
software compatibility (now in the making), any simulation software, such as Interactive Physics,
will be importable into the Workstation to enrich modeling activities.

As most applications will be imported rather than intrinsic to the Workstation, we can
safely defer discussion of the many interesting possibilities to a later date. We mention only that,
for instructional purposes, we strongly favor the construction of model worlds (or microworlds)
on the computer, where the students can play with model objects and investigate their properties.
Research by White (1983) and others shows that this approach has great pedagogical promise.
Our Workstation provides all the tools needed to construct and experiment with model worlds,
and to move from them to genuine physical applications. In this respect, it can serve as a generic
pedagogical tool for the design and control of instructional environments.

The modular structure of the Modeling Workstation makes it extendable and adaptable to
new modeling tasks. Although our Workstation is designed specifically for modeling in physics,
by separating specific and generic aspects of modeling, we aim at a universal design applicable
to all the sciences. In this way, we hope to contribute to the unification and coordination of
scientific knowledge.

2.3.  Cognitive Principles of Interface Design
By Interface we mean the human-computer interface through which a user interacts with a

computer. It consists of a screen for display and some means for user control (usually a keyboard
and mouse). For brevity here, we ignore audio interactions, although they may well serve a
number of useful purposes in the workstation.

Interface design is critical, because it determines the quality of the human-computer
interaction. Most of our remarks about software design concern the Interface. Interface design has
been a rich subject for research in cognitive science for more than a decade (Norman, 1983).
Kaput (1992) has produced the most profound analysis of human interaction with symbolic
representations and the potential for computers to enhance it. Here we summarize some of the
lessons learned about cognitive aspects of visual interface design.

Interactive Modes
The computer is an interactive medium when the user responds directly to displays on the

screen and modifies them. Interaction can proceed in one of two modes: direct manipulation or
command. The choice of mode is critical to good software design, so we make some general
remarks about it:

(1) The direct manipulation mode enables the user to "grab" objects (with a mouse, stylus,
space ball or data glove, etc.) and move them around the screen or perform other operations on
them. It is the implementation of this mode, along with metaphors for objects and actions, such as
"the screen as desktop", that makes Apple Macintosh software so user-friendly. For this reason,
we introduce direct manipulation into our design of modeling tools whenever possible. The main
problems with this mode are for the user to know what type of functionality the mouse click
controls and what parts of the display can be directly manipulated. One solution is to prompt or
cue the user with icons, menus or "balloon help". However, care must be taken not to detract from
the immediacy and self-evidence of direct manipulation, which are its main advantages.
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(2) In the command mode the user issues typed or verbal commands to the computer for
actions to be carried out. It is not always possible to substitute direct manipulation for a
command. For example, although an approximate value for a parameter can be set by adjusting an
analog scale with a mouse, an accurate numerical value must be typed in. The main problem with
the command mode is that the user may not know or recall the commands at his/her disposal, and
command names are seldom derived from a coherent set of rules. A solution is to use menus
which list the available commands, but this quickly becomes tedious after the user has learned the
commands. The number of commands can be reduced with expandable menus which group the
options. Of course, the command mode has the advantage of exploiting the user's familiarity with
the English language, and it is especially useful for delegating complex or tedious tasks to the
computer.

In general, good interface design exploits the best features of both direct manipulation and
command modes. In particular, if direct manipulation is used for a variety of tasks it must be
augmented by commands to inform and assist the user.

Models and Representations
In science, a model is a representation of a real thing (or class of things), including its

structure and behavior. The representations are of two general types: descriptive or depictive.
Descriptions can be verbal (using English) or formal (using mathematics) or some combination of
the two. They consist of character strings, which are subject to syntactical rules specifying
relations and operations among the characters (Kaput, 1992). Depictions are 2-dimensional
displays such as graphs and diagrams, or pictorial analogs such as animations or maps. Many
depictions (tree diagrams, for example) include labels which couple them to descriptions, so they
are representations of mixed type. On the other hand, some descriptions, such as spread sheets or
matrices, have depictive features.

A mathematical model is a formal representation consisting of mathematical equations
interrelating descriptive variables. It is not actually a complete model, because it lacks a semantic
interpretation relating it to its referents. The interpretation is typically supplied by a combination
of verbal and depictive representations. Thus, characterization of the complete model is often
distributed over representations of different type. Some features of the model have representations
of different type, each with distinctive advantages. Therefore, coordination of multiple
representations is an important objective of interface design.

When a model is represented (e.g. by characters and diagrams) in an inert medium such as
pencil and paper, the syntactic and semantic structure must be supplied by the reader. In contrast,
the computer is an active medium capable of representing this structure by constraints on the
manipulation of symbols. This means that the user need not be fully acquainted with the structure
to use a computer model; he/she learns the structure by manipulating the model, just as all of us
have learned the properties of physical things by manipulating them. In other words, the structure
of computer models is learnable by a naive user. The problem is to design modeling tools, for
constructing and manipulating models, which make the syntactic and semantic structure as self-
evident as possible.

Semantic knowledge in science is mostly tacit and indirectly acquired, so a great deal of
experience is required to consolidate it: this naturally leaves the student in a confused or uncertain
state. In the next paragraph we offer an important example of how to design modeling tools with
coupled (or hot-linked) representations to make semantic relations salient to the student. A
coupling between a formal and a depictive representation can be construed as a "model" of the
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semantic relation between a model (the formal representation) and its referent (the depictive
representation). We suggest that the learning of such couplings as mental associations (mostly by
informal means) is one of the main ways by which scientists consolidate semantic knowledge.

Vector semantics
The interpretation of vectors as formal representations of directed line segments (arrows)

is essential to physics, though vectors and arrows can be regarded as different but equivalent
representations of relations in the real world. Key elements in the design of a  vector algebra
tool to express the semantic relations between vectors and arrows are illustrated in Fig. 2.31
which depicts coupled description and depiction windows side-by-side on the computer screen.
Actually, both descriptions and depictions could appear in the same window, but keeping them
separate helps emphasize the semantic coupling.

On line 1 of the Figure, two arrows are drawn. Labeling them with characters a and b
automatically hot-links them to the depiction window, so when a + b is written on the left of
Line 2 the computer automatically lays the arrows tail to head on the right. When the sum a + b
is set equal to a vector c on the left of Line 3, the corresponding arrow appears on the right. After
that, typing that letter c on the left, as in Line 4, produces the labeled arrow on the right.
Likewise, the minus sign on the left of line 5 reverses the sense of the arrow designated by b on
the right. If the equation in Line 3 is solved for a, as in Line 6, the modified triangle immediately
appears on the right. When a vector is multiplied by some scalar λ as in Line 7, a default value

(near 1) is automatically assigned, and the arrow λ a appears on the right with an analog scale

displaying the value of λ . The value of λ can be adjusted on the scale with a corresponding

change in the length of λ a. Similar adjustments using the distributive law in Line 8 produce a
family of similar triangles.

These examples suffice to show how the formal syntax of vector algebra can be related to
a geometric syntax of depictions with arrows. There is a definite correspondence between rules
for combining and manipulating arrows (geometric syntax) and the formal syntax governing
vector manipulations (Hestenes 1986). This should not be surprising, because vector algebra was
invented to provide a formal language for geometric relations.

It is important to note that the geometric depiction or interpretation of vector algebra is
not unique. For example, the older literature often distinguishes between free and bound vectors.
This not actually a difference in vectors but a difference in depiction (or interpretation). The
depictions we have discussed so far are free vector depictions. In Fig. 2.31, the "free depiction"
in Line 3 can be compared with the "bound depiction" in Line 9. In the bound depiction the tails
of all vectors are "bound" to a single point which designates the zero vector. When vector
algebra is used as a language for geometry, the vectors representing points (called position
vectors in physics) are bound vectors and the point designated by the zero vector is called the
origin. However, "parallel displacements" and other relations among points are represented by
free vectors.

In applications to physics, alternative depictions support alternative physical
interpretations of algebraic equations with identical form. For example, the depiction in Line 3 of
Fig. 2.31 is suitable for a displacement, whereas the one in Line 9 is suitable for a superposition
of two forces. The crucial role of depictions in mediating the physical interpretation of
mathematical models often goes unrecognized by students (Hestenes 1987), because they are
employed only informally. In practice, the physical interpretation of a model is usually specified
by mapping the formal description onto a depiction and the depiction onto the physical
phenomenon, for the simple reason that the depiction is easier to fit to data. These semantic
correspondences are expressed by

formal model   <---------->   depiction   <---------->   object
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We have described how computer modeling tools can be designed to make the first semantic
correspondence visible to students. Later we describe some ways to make the second
correspondence visible. We submit, though, that when physicists or mathematicians speak of an
interpretation of a formal model, they are usually thinking of the first correspondence. By
making the semantic correspondences immediately explicit, modeling tools make them more
learnable.

Abstraction
The foregoing ideas for expressing semantic relations by coupling representations of

different type provides a framework for explicating the fuzzy concept of abstraction and
clarifying it with computer implementations. We regard abstraction as decontextualization, the
separation of a formal (or verbal) expression from its semantic context. Thus, an abstract model
is a formal model separated from any interpretation. Likewise, an abstract symbol is a symbol
detached from its referents. This is expressed clearly in the computer by deactivating the
coupling between "descriptors" and "depictors", that is, between descriptions and depictions.

We can be more specific. As before, let the character a denote a vector variable. A
variable is actually a function, a many-to-one function which "selects" one value from a set of
"allowed values." The character a can be regarded as the name for a file containing the essential
semantic information defining the semantic meaning of the variable. Accordingly, we design the
interface so a double click on the mouse opens the file, as illustrated by

double

click

a a

At the least, the file is a small window exhibiting an arrow with its tail attached to the place of a
on the screen. The arrow is a depictor representing the value of a. It can be stretched/rotated
about the origin by "grabbing" and moving its head with the mouse, to express a change in the
value. Of course, the same device is used to indicate the value of a scalar variable on a sliding
analog scale. Note how the tacit distinction between a variable and a "value of the variable" is
made explicit by this device. It should be a very effective means for helping students consolidate
the concept of variable, but it is not a mere tutorial device! It is obviously valuable for
sophisticated users.

The "semantic file" for each variable will be modifiable. For example, the value of a
vector variable can be expressed alternatively by a list of components with numerical values, but
that requires introducing additional information defining a reference frame. Furthermore, the
variable can be given a physical interpretation by attaching its values to a system of physical
units. The semantic file thus enables us to give precise meaning to vague notions of "levels or
degrees of abstraction" or "semantic distance" of a symbol from a specific referent.

There are two natural levels of abstraction. At the lowest level, no physical referent is
specified, but descriptive characters (descriptors) do have depictive referents. At the highest
level, the formal level, descriptors are disassociated even from "depictive meaning" to become
fully abstract characters. Nevertheless, the characters retain "syntactic meaning" assigned to
them by the syntax of the formal system to which they belong.

Our characterization of abstraction and semantics for symbolic characters carries over to
models. For example, the equation  a + b = c  can be regarded as a model for a triangle if the
vectors are interpreted as relations between vertices of the triangle. This interpretation can be
made explicit by highlighting the equation and double clicking to call up a depiction; thus,
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The depiction exhibits a specific triangle, and it can be deformed into any other triangle by
grabbing and moving the vertices with a mouse. The equation is unaffected by such alterations of
specific values for the variables. It is thus an "invariant property", that is, a property of all
triangles. All general properties of triangles, such as the "law of sines" and the "law of cosines,"
can be derived from the equation using the formal syntax of geometric algebra (Hestenes, 1986).
Here we have an example of how mathematics achieves a complete separation of form (or
structure) from content. The computer tools we have described make all this immediate, explicit
and salient. Their pedagogical potential is enormous.

To summarize, computer tools enable us to express the interpretation of a formal model
explicitly with coupled representations. Decoupling the formal model from its interpretation lays
bare the relational structure of the model. Conversely, a single formal model can be coupled to
an unlimited number of different interpretations. By this means mathematics gains its great
power and universality. The computer tools that implement all this explicitly thus have a great
range of applicability to modeling physical phenomena.

Transfer
The knowledge transfer problem – how to foster the ability of students to transfer

knowledge acquired in one domain to applications in another domain – is one of the most
important and long-standing problems in education. We submit that modeling tools such as we
have been discussing have the potential to go far to its solution. The crux of the problem is in the
tools not the teaching.

Lessons learned from the vast but inconclusive research on knowledge transfer have been
summarized by Perkins (1989). Expert thinking has been found to depend on "specific, context-
bound skills and units of knowledge with little application to other domains." Transfer is highly
specific and must be "cued, primed and guided; it seldom occurs spontaneously."

The possibility of transfer is highly dependent on how the knowledge and skill have been
acquired. Perkins suggests that the key to transfer is acquiring general "metacognitive" skills and
principles for managing knowledge. Such knowledge is first learned in the context of a specific
domain and then decontextualized (or abstracted) for application to other domains. Without
denying the importance of metacognitive knowledge, we submit that there is a more fundamental
determinant of knowledge transfer. Skills are tied to tools, cognitive as well as physical. Without
a basketball, Michael Jordan's great skill cannot be exhibited and could not have developed.
Most of the cognitive tools that experts have acquired are of slap-dash design, because they have
been created to meet the needs of a moment. The computer modeling tools which we have been
discussing are designed to facilitate both abstraction and interpretation of mathematical symbols.
The skills of decontextualizing and recontextualizing, which are essential to knowledge transfer,
are incorporated into the design of the tools. One could say that these tools are designed to
facilitate knowledge transfer. It remains to be seen how much use of these tools promotes
transfer among students.

Attentional focus
One of the most robust observations of cognitive research is that attentional focus is

crucial to learning. Students often fail to learn in an educationally rich environment, because they
fail to attend to the right things. Therefore it is of the utmost importance that we design the
interface display to direct the user's attention to essential features. Here we review some devices
for doing that. Again, note that these devices are not mere tutorial crutches; they are helpful to
sophisticated users as well.
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Grouping and Chunking    
The cognitive process of mentally collecting of several items to form a single entity is so

basic to understanding that a number of notational devices have been invented to represent it.
The parenthesis (          ) is used for this purpose in formal systems, and the dotted outline

   is often used in depictive displays. For ease and simplicity, the highlighting feature
on computers is an unmatched grouping device, and it should be systematically integrated into
descriptive and depictive syntax.

The replacement of an entire set by a single character, which can function as its name, is
a proven device in mathematics. Let us call it packing. It is closely related to the cognitive ability
called chunking, the ability to deal with a complex mental or perceptual entity as a single unit.
Indeed, we believe that notational packing promotes cognitive chunking. Standard software
allows one to replace a highlighted set with a single character and even retrieve it with an "undo"
command. It could easily be stored permanently with, say, a "pack" command, after which the
character could be "unpacked" with a double click to retrieve the original set. This is the simplest
kind of file creation. Our "packing device" has been built into a powerful, simple programming
system called Boxer (diSessa & Abelson, 1986).

Suppression of detail   
The computer has powerful capabilities for removing or suppressing irrelevant or

distracting detail from the computer screen. Packing and abstracting devices can do that, though
they have other purposes as well. A particularly important application of abstraction tools is to
simulation. A (computer) simulation is a temporal display on the computer screen controlled by
the equations of a model. It is thus a (partial) representation of its "underlying" model, but it
should not be confused with the model itself (though it often is). We distinguish between bare
and dressed simulations. A bare simulation, such as a moving spot on the screen, is devoid of
semantic content which might suggest a referent. It becomes a dressed simulation by adorning it
with semantic markers, such as a rocket icon riding on the moving point. In experiments with
children, White (1983) has found that bare simulations have definite pedagogical advantages
over dressed simulations, in keeping with our observations about the importance of abstraction.

Besides suppressing spatial detail as just discussed, the computer can suppress temporal
detail in user actions by automating some of them. It can reduce routine or complex algorithms
to a single command; moreover,  software like the Geometer's Sketchpad (Jackiw, 1992) greatly
increases the efficiency of drawing and manipulating figures with constraints. Cognitive research
shows that higher-order thinking requires automation of lower-level operations (Anderson,
1983). By automating lower levels, the computer liberates novices to operate at higher levels.
The need for rote memory is also reduced thereby, so the computer has the potential to shift the
emphasis in education from memorization to the study of structure. The problem is to design
computer tools which make the structure of science and mathematics as visible and obvious as
possible. As Kaput (1992) observes, that is one of the main objectives of mathematical notation.

Reifying Actions
Kaput notes that students tend to focus on states rather than actions, evidently because

actions are so evanescent. One of the most powerful inventions of mathematics is the operator
notation, which reifies actions by creating notations to represent them. In other words, actions
are turned into concrete objects which can be combined and manipulated on the computer screen.
Students need to learn operator concepts and notations at an earlier age, and modeling tools can
be designed to facilitate that by hot-linking executions, depictions, and simulations of actions to
action characters.

Action focus
Learning requires more than attentional focus: the object of attention must be coordinated

with some action, overt or covert. Such a simple device as the "forced choice" may be sufficient
to consolidate the desired mental associations. For example, at some stage the user should be
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required to introduce labels, when setting up hot-links, to direct attention to specific associations
involved. The associations may be reinforced by allowing the user to customize the notation.
Later, automation of the labeling with default assignments releases the user's attention for higher-
order operations.

Manipulable diagrams, hot-linked to equations which constrain them, provide an easy,
even powerful, means for a qualitative analysis of consequences of the equations by parametric
variation. Later we explain the use of adjustable overlays to make the matching of a model to
data simple and salient.

Procedural insight   
Donald Norman (1983) has studied the mental models people have of technological

devices they use, such as the hand calculator, computer and video camera. They are forced by
circumstances to develop such models to guide them in operating the devices. He finds the
models "surprisingly meager, imprecisely specified, and full of inconsistencies, gaps and
idiosyncratic quirks" even among experienced operators. The difficulties students have in
understanding and applying physics is of essentially the same ilk. To operate a calculator
efficiently, a person must have a clear and accurate mental model of how it works. The same is
true of applying mathematical methods and will, of course, be true of operating the Modeling
Workstation. Accordingly, we strive to make the Workstation as operationally transparent as
possible, by incorporating maps of its structure and procedural plans, along with provisions for
taking the knowledge system apart and reconstructing it. We exploit powerful facts about mental
models: The path is a metaphor for the journey. The tool is metaphor for the task.

It should be noted that direct manipulation on the computer screen accurately reflects the
structure of the underlying programs it controls.

2.4. Modeling tool kits
In this section we discuss the design of an integrated sequence of tool kits for modeling

geometry, kinematics, dynamics, and general dynamical systems, in that order. Beginning with
geometry, each kit presupposes and expands the capabilities of the kit preceding it.

Geometry tool kits   
Geometry and kinematics underlie all of physics and the rest of science too, for every real

thing is presumed to be located in space and time. Geometry tools are designed for constructing,
manipulating and comparing geometrical models of real objects, especially rigid bodies. A
geometrical model is one with geometrical properties alone. The geometry tools are capable of
creating and coupling both formal and depictive representations, as described in Section 2.2.
Formal apparatus for vectorial and coordinate representations will be introduced in tandem with
depictive apparatus for figural representations. No sharp divisions between geometric, algebraic,
vectorial and trigonometric methods are made; they are all integrated into a single system of
geometric tools. Traditional synthetic methods of geometry are not incorporated into the system,
because they are replaced by more powerful formal methods of modern mathematics. However,
they survive, in part, in verbal descriptions of formal relations and so provide a link to existing
knowledge through the English language.

Geometry tools are of three general types, which we describe briefly with emphasis on
some unique features of our design.

(1) Construction Tools.
For 2-d Euclidean geometry, these tools are used to construct geometric objects of three

kinds: figures, bodies and curves.
By figures we mean points, lines, line segments, circles and circular arcs, as well as any

figures, such as polygons, which can be assembled from them. The tools are also able to create
constraints among the figures, such as tangency of a line to a circle, which are preserves
(invariant) under manipulations of the figures. Some excellent geometry software (Geometer's
Sketchpad and Geometric Supersupposer) for doing such things is already on the market. Our
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tools will go beyond that in hot-linking vectorial and coordinate representations to the figures so
their geometrical properties can be characterized by equations. Hestenes (1986, Chap. 2) has
already developed this subject thoroughly with geometric algebra. Following his approach, we
regard the concept of direction as an irreducible primitive of geometry. Directions are
represented formally by vectors and depicted by arrows. Consequently, arrows will figure
prominently in all our depictive constructions from the beginning.

Geometric figures can be turned into models of solid bodies by making them rigid and
impenetrable. Although rigidity and impenetrability in real bodies emerge from physical forces,
they are formulated as geometric constraints, that is, they are modeled as geometric properties.
However, both these properties become evident only when the objects are manipulated. A
convenient way to depict impenetrability is by thickening the boundary lines of figures.

More advanced construction tools can be used to create algebraic and Bezier curves, and
even general analytic curves. However, most useful curves will be available from a "stockroom"
(or library) of geometric models, which will be included as part of the complete geometry tool
kit.

(2) Manipulation tools.
These tools move geometric objects about and rescale them. There is a tool for executing

each of the basic transformations: translations, rotations, reflections and dilations (rescaling).
These transformations are represented formally by operators which, when applied to any vector
designating a point in an object, will automatically induce a depiction of the transformation of
the entire object. Except for reflections, the transformations are controlled parametrically by the
user, so they can be seen as unfolding continuously.

(3) Measuring tools.
These tools ascertain geometric relations. They do not alter the geometric objects to

which they are applied. The most basic geometric properties are distance (or length) and
direction. It should not be surprising that these are also basic properties of vectors, because
vectors were invented to represent them. To depict measurements of these properties, we need
two kinds of tool: ruler and protractor. The computer enables us to design tools which make
measurements on the screen far quicker and easier than in the physical world. These tools are not
just toys, though, they can be applied to make physical measurements directly off video displays.
The exercise of doing such measurements helps students develop a strong grasp of "units"
because of the sensitive scaling and perspective involved.

One convenient type of ruler is a kind of expandable tape measure. To perform a
measurement of the distance between two points, one simply fastens the tape on one point with a
mouse click, then pulls out the tape until it reaches the second point, where it can be attached
with another click. One then has a line segment connecting the points, and the line has a scale,
with respect to some unit, from which one can read off an estimate of the distance between the
points. The computer can also supply a more accurate numerical reading of the distance. The
scale on the ruler can be changed at will by adjusting the unit. Students will notice that this kind
of rescaling is different from the one using manipulation tools. This one keeps the size of objects
fixed while the size of the unit is changed. The other resizes the objects while the unit is fixed.
The latter is called an active transformation, while the former is said to be passive.

Another useful type of ruler is a folding ruler, which works much like the tape measure,
except that it is composed of straight line links of fixed length connected by freely bendable
joints. This kind of ruler can be used for polygonal approximations to curves.

Our protractor tool is simply a unit circle with a scale (in radians or degrees) which can
be centered at any point on the screen to compare directions there. The circle displays a
horizontal radius vector which serves as a reference direction. This vector does not change
direction when the protractor is displaced. In other words, all displacements of the protractor are
translations, accompanied by parallel transfer of the reference vector to the point where the
protractor is centered. This makes it possible to compare directions at different points. Parallel
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transfer is one of the fundamental concepts of higher geometry incorporated into the design of
our tools.

Our measuring tools will also be able to introduce coordinate systems. A coordinate
system can be regarded as a generalized ruler-protractor, because it combines the capabilities of
both. Our coordinate system tool allows many options, including

origin
frame
axes rectangular
coordinates polar

skew

Selection of any of these options immediately instantiates a depiction on the screen which
reveals precisely what the option entails. The display will also be manipulatable. Actually, we
have already created and used a coordinate tool with many of the options we need.

After the kinematics kit has been developed, depictions of radar and sonar measuring
tools can be built. Such tools are essential for measuring distance in relativity theory.

Although we have restricted our discussion to 2-d geometry, we will also develop the
generalization to 3-d geometry along with some new tools as well. The first task will be to model
the 3-d geometry of simple rigid bodies, such as spheres and cubes. Beyond that, we will create
coupled formal and depictive representations of Frenet frames for arbitrary differentiable curves,
including a depiction of the "osculating circle" as a point slides along the curve. Ultimately, we
intend also to develop a complete kit of tools for characterizing the differential geometry of 2-d
surfaces.

Kinematics tool kits
Kinematics is the geometry of motion, so kinematics tool kits are extensions of our

geometry tool kits. In accordance with our general plan, we are designing self-contained tool kits
of increasing sophistication from 2-d through 3-d to 4-d (spacetime) descriptions of motion.
Einstein's theory of special relativity is fundamentally a kinematic theory; he regarded it as the
natural completion of ideas about space and time which developed over centuries. We believe
that our tools will make relativity more obvious, understandable and accessible to students at an
earlier stage in the physics curriculum.

Our kinematics kits are of two main types: Kits for describing, depicting and
manipulating models of (a) particle motions and (b) reference frames. We discuss both in turn.
Relativity requires a modification of reference frame kits to codify the operational concept of
temporal synchronization. We will omit that from our present discussion for lack of space and
time.

The kinematics tool menu will include the following options:

I. Create (destroy) particle
Describe (edit)

II. Create trajectory
Draw
Import
Describe
Select
Generate
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III . Depict motion
Motion map

kinematic fields
hodograph

Simulation
Graph
Phase portrait

Next we briefly describe some important features of these modeling tools.
To create a particle (model) when the tool is activated, one merely selects a place on the

screen for its "position" and double clicks. Then a spot appears to depict the particle at that
position and a pop up description dialog box appears as shown in

Fig. 2.41.

x
v

x

The box displays a list of default symbols for descriptive variables (descriptors). The list can be
edited to replace the defaults with other symbols in the usual way. In fact that must be done if
there are two particles on the screen, because no two particles can have the same descriptors. By
the device explained before, specification of descriptors automatically hot-links them to all
depictions of particle behavior. The check next to the x makes it appear as a label on the screen,
as shown. Double clicks on x and v will make values for the position and velocity vectors appear
on the screen in proper relation to the point (more below).

The dialog box in Fig. 2.41 has standard Mac features: The box can be moved around by
"grabbing" the bar at the top; however, it will remain connected to the original point by the
"thread" shown in the figure. The box can be closed by double clicking the square in the upper
left, and it can be resized to make room for more descriptors by "pulling" the square in the lower
right. Finally, a double click in the button at the bottom will open a more elaborate description
window which will supply all relevant information about the particle, such as the following details
about descriptors:

   special values   
Verbal       Formal       Functional      initial       other   
name (label)
position x x(t) x0 xk = x(tk)
velocity v v(t) v0
acceleration a a(t) a0
speed v = |v| v(t) v0
path length s s(t) s0
mass m
charge q

The descriptors "mass and charge" are included to indicate how the description will be extended
when one goes beyond kinematic models to dynamics.
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We always use vectors for our primary kinematic descriptors. The option to use
coordinates will also be available, but that will require specifying a reference frame (as explained
below).

After suitable descriptors for the particle have been chosen, a trajectory must be created
(i.e. specified). Five different ways to do that with our modeling tools were listed above. Now we
describe each one briefly in turn.

(1) Draw. This tool enables the user to create (draw) an arbitrary trajectory simply by
dragging the particle on the screen from one point to another. The path can then be made into a
trajectory by " ticking" (or marking) positions on the path at successive time intervals. In this
way the user creates "fictitious data" from which, by smooth interpolation, the computer
automatically creates a complete vector-valued function x(t) for the trajectory. By differentiation
it also creates velocity and acceleration functions : v(t) and a(t). All trajectories created in this
way are smooth. In the dynamics kit, a momentum conservation tool makes it possible to
introduce discontinuities in the path (attributed to collisions).

(2) Import. This tool is similar to the draw tool, except that the trajectory is constructed
from data imported from some external source (such as an experiment). Consequently, the tool
must include scaling capabilities to properly match the data to screen parameters.

(3) Describe. This tool enables one to create the trajectory function x(t) from a menu of
mathematical functions.

(4) Select. One simply selects the desired x(t) from the "stockroom" of particle models.
(5) Generate. This tool obtains x(t) by integrating a specified differential equation. Of

course, it is the job of dynamics to determine that equation.
After a trajectory has been created, it must be depicted in ways which make its structure

visible and obvious to the user. Several devices for doing that were listed above. Among those,
we think the motion map is the most fundamental, because of its close tie to the geometry of
physical space and visual experience. The motion map is a proven cognitive and instructional
tool (Hestenes, 1987). The computer makes it even more effective.

A motion map depicts motion by representing kinematic variables as vector/scalar fields
on the particle path. For example Fig. 2.42a depicts particle velocity v  and speed v as,
respectively, vector and scalar fields on the path, with instantaneous values sampled at equal
time intervals. This is an unusual choice of variables, but it serves to make a point. Note that the
lollipop values for the speed depicted in the figure can be interpolated to show speed as a
continuous scalar field on the path, or, if you will, a graph of speed versus distance traveled. This
is easy to map visually onto the more ordinary graph of speed versus time shown in Fig. 2.42b. It
should not take much experience with the easily manipulatable computer representations of this
type for students to clearly distinguish speed from velocity and graphs from maps. These have
been objects of perennial student confusion in the past.

The concepts of scalar and vector fields are fundamental to physical understanding, but
usually they are first introduced in the study of electricity and magnetism. There the fields are
two and three dimensional, and students have much difficulty understanding them. This
difficulty would be considerably alleviated if students first became thoroughly familiar with
scalar and vector fields on curves before considering 3-d fields. Our tools will be the first to do
this systematically in kinematics.

Kinematical simulations are closely related to motion maps. The main difference is that
the motion map represents the entire motion in a single spatial display, while a simulation depicts
it as unfolding with time. The advantages of both can be combined by having the simulation
generate the motion map as a trace (or track) of the moving particle.

For depicting simulations and many other aspects of physics we build the concept of
tangent space systematically into the design of our modeling tools. "Tangent space" is one of the
fundamental concepts of differential geometry, but it is usually introduced only in advanced
mathematics. The powerful depictive capabilities of computer modeling tools enable us to take
advantage of the concept at a much lower level. The tangent space of a geometrical point x is a
vector space "attached" to the point. We depict is as a vector space with its origin at x, as shown
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Fig. 2.42b

in Fig. 2.43, where x is the position of a particle. The velocity and acceleration vectors are "in"
the tangent space, which is depicted by the dotted window centered at x in the figure. (Note the
difference between the tangent space at a point and a tangent line through the point.) In a
simulation, the tangent space moves with the curve. To an imaginary observer riding in this
space, the vectors v and a will be "seen" as changing with time. Our simulation tools can make
this literal as a visual image by keeping the tangent space fixed and moving the curve with time.
In this representation the velocity traces out a curve v =  v(t) called the hodograph of the motion.
The hodograph is an underutilized concept in mechanics (Hestenes, 1986). Our tools take
advantage of it.

We incorporate the tangent space into a general modeling tool that we call the tangent
window. As suggested by Fig. 2.44, the window can be moved along a particle path (or any other
curve) by dragging its center with the mouse, and it can be preset to display and/or label the
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Fig. 2.43. Depicting the tangent space of the point x.
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Fig. 2.44 Tangent window.

values of any desired tangent vectors (or scalars) at the point where it is centered. A double click
will leave the vector there after the window is removed. With this tool, tangent fields can be very
quickly displayed as desired on a screen. By affixing the tangent window to the particle in a
simulation, we then get the depiction shown in Fig. 2.43.

Alternatively, if the v in the window of Fig. 2.44 is the velocity at the point, then it can be
regarded as a parameter of the curve, so if it is varied using the mouse, the curve can be
programmed to change accordingly. This should be a very efficient for qualitative curve fitting.
Thus, the tangent window can be developed into a useful tool for tangent space control of curves
through a given point.

Reference frame    
Kinematic tools introduce a crucial semantic distinction into the depiction of spatial

relations which is absent from geometry. In geometric modeling, the computer screen serves as a
representation of physical space  modeled as a unique 3-d or 2-d Euclidean space. In kinematic
modeling, however, the screen display is depiction with respect to a particular reference frame,
and it differs for different frames. The physics of reference frames has long been one of the most
difficult topics to teach, in large part, we believe, because traditional depictive tools are clumsy
and static, placing an excessive mental visualization burden on the student. Reference frame tools
hold great promise for rectifying that.

Like other objects we model, a reference frame has both a description and a depiction
which must be set up when the frame is created. Like the "create particle tool," a "create frame"
tool opens up a description box where all the relevant descriptors are easily specified. These
include (a) a name for the frame: primed or unprimed (to use a common convention in physics),
(b) an origin designated by the zero vector: 0 or 0', (c) a set of unit vectors: {e1, e2, e3} or { e1',
e2', e3'}. The unprimed frame is a default frame, always present, but invisible on the screen unless
a "show frame" command activates its depiction. "Reference frames" are generalizations of
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"coordinate systems," so all the coordinate system tools are included in the reference frame tool
box. In addition to spatial coordinates, the frames have clocks which may need to be
synchronized. This is critical in relativity theory. All kinematic variables introduced earlier are
defined with respect to the default reference frame. Any variable or equation can be redefined
with respect to a new frame simply by highlighting it and applying the "change of frame" tool.
This tool requires specification of equations for the transformation from one frame to another. For
that purpose we have a displacement operator, a variant of the manipulation tools described
earlier. This operator generates rigid displacements, a combination of translation and rotation.
Unlike before, these displacements can be time varying to describe and depict rotating and
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Fig. 2.45. Frame window.

generally accelerating frames. Of course, for transformations between inertial reference frames
the time variation is highly restricted. The displacement operator tool will be used later in
Workstation development for rigid body kinematics.

Our main frame depiction tool is the frame window illustrated in Fig. 2.45. It has many
capabilities of the tangent window discussed earlier, along with all the coordinate system options.
The displacement operator can set the window in motion, or the window can be held fixed while
the "background" frame on the screen is moved. Of particular interest is the fact that the window
is transparent, so simulation paths generated simultaneously in two different frames can be
directly viewed and compared by the user. This will surely be a very powerful tool for helping
students understand relative motion.

Dynamics   
Dynamics goes beyond kinematics in modeling "outside influences" on the motion of an

object. Therefore, a dynamics kit must contain tools for modeling the environment and its
interactions with the object. All this is done within the context of some physical theory such as
Newtonian mechanics, as was explained in Section 2.3. A systematic classification and analysis
of interactions in mechanics is given in (Hestenes 1986, 1987 and 1992). This will be built into
our design of "interaction tools." No need to elaborate here.

Dynamical Systems   
Dynamical systems theory is best regarded as a branch of general systems theory

concerned with abstract process models governed by differential equations. It is an abstraction
and generalization of Newtonian mechanics, separating form from content, to be used for
modeling any process of change in quantifiable property variables. Most of the modeling tools we
have discussed can be accordingly generalized for modeling general dynamical systems. This
broadens the scope for applications of our modeling tools enormously, so we will provide for it in
our designs.

Math Utilities
At the higher levels of sophistication, the Modeling Workstation will have a full

complement of mathematical utilities for use in modeling. Some powerful mathematics packages,
such as Mathematica, Maple and Mathcad, are now available and keep improving. The
Workstation must be designed to take advantage of these resources. However, none of the math
packages meets our criteria for interface design, so we must design our own interface and call
them up as subroutines.

The most crucial failing of math software and mathematics in general is an inadequate
treatment of semantics, a critical issue in modeling. It may be said that in the systematic treatment
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of semantics modeling theory goes beyond mathematics. True, there is a branch of formal
mathematics called "model theory," but its obscurity is symptomatic of the fact that it falls short
of meeting the needs for modeling in science.

The semantic weakness of mathematics is evident in treatments of the concept of function,
rightly regarded by many as the central concept of mathematics. Functions appear under many
pseudonyms, including

(1) operators,
(2) transformations,
(3) fields,
(4) change of representation.

All these terms are commonly used by mathematicians without specifying precisely what
distinguishes them. Everyone recognizes that the universal concept of function embraces them all,
and that any of the terms might be applied to one and the same functional form. Usage is dictated
informally by custom and context. However, the very consistency of the usage suggests
something deeper. We submit that consistent use of pseudonyms for "function" is governed
mainly, though not exclusively, by tacit semantic knowledge, and we take it as a job for modeling
theory to make that semantic knowledge explicit, so it can be systematized like the rest of
mathematics. As our discussion in earlier subsections suggests, a promising way to proceed is by
formalizing depictive syntax and its relation to syntactic syntax. We have started that in our
design of modeling tools. Specifically, we distinguish sharply between fields and transformations
by the depictions we give them. A given vector-valued function of a vector variable could be
either a field or a transformation. For a field, the range and the domain of the function are of
semantically different types, and this is expressed in its depiction by arrows in tangent spaces. For
a transformation, on the other hand, the range and domain are of the same semantic type. In truth,
several different types of transformation can be distinguished by different semantics, but this is
not the place for details. Semantics, as a formal discipline, is still in its infancy. The message here
is that computer depiction tools may help it grow up.

2.5. Modeling Systems
In this Section we describe the organization of Modeling Systems software at the highest

level in the Workstation. The entire system is designed to reflect the structure of scientific
knowledge in general and of physics in particular. This includes both factual and procedural
knowledge. Procedural knowledge is built into the design of modeling tools and into the
coordination of tool use required by theories. This knowledge can then be used to analyze and
store factual knowledge so it can easily be retrieved and applied when needed.

Two interfaces, two metaphors   
To express the division of science into empirical and theoretical components, we create a

separate software subsystem for each. Each subsystem has its own interface, though both employ
the same computer screen. Figure 2.51 is a global schematic of the Workstation showing
interaction with the user through empirical and theoretical interfaces along with links to external
sources of information.

The empirical interface displays empirical data/information which has been imported
either directly through connections to scientific instruments or indirectly by video tape or by
some other means. We construe the term "empirical" to embrace both observation and
experiment. The term "experimental" implies some manipulation of natural processes, whereas
"observational" (as in astronomy) does not. The empirical interface may provide some
capabilities for acting on the physical world, for example, by controlling apparatus in an
experiment, but the data gathering and display functions will be dominant. Of course, the user
can select and manipulate whatever data is of interest by acting on the interface.
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Figure 2.51. Modeling Workstation: General structure and external links.

The theoretical interface has all the tools needed to construct and analyze scientific
models, including coupled formal and depictive representations, in given theoretical domains. It
also provides easy access to standard models and factual knowledge useful for modeling in those
domains.

We have noted the importance of metaphors to help users understand the structure and
utility of software systems. Our choice names for the two interfaces is intended to support a
social metaphor wherein the Modeling Workstation embed the user in the scientific community.
The empirical interface is thus a metaphor for shared experience of the real world viewed
through the eyes of scientific instruments. The experience is shared in the sense that the interface
presents the same view to anyone who inspects it. Similarly, the theoretical interface is a
metaphor for shared knowledge, for through this interface everyone has equal access to the
common body of scientific knowledge. Such shared experience and knowledge is the foundation
for objectivity in science. The Workstation creates a universal, reproducible scientific
environment to which every user has equal access. To a group of students using the same
Workstation, the scientific environment provides the rich body of common experience needed to
provoke meaningful scientific dialog among the students. How the teacher should deploy the
Workstation to best achieve such a result is a matter for future research.

Besides the social metaphor for Workstation function, the brain metaphor schematized in
Fig. 2.52 may be enlightening. In this metaphor we replace the terms "empirical and theoretical"
with perceptual and conceptual respectively, and, for historical reasons, we call the user
Homunculus. The Workstation is then seen as an expansion of the human brain, increasing the
mental powers of Homunculus. Through the Perceptual Interface Homunculus gains a view of
the world from scientific instruments that far surpasses the human senses in sensitivity and
range. Through the Cognitive Interface Homunculus engages the power of scientific theory to
augment
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Figure 2.52. Brain metaphor for Modeling Workstation function.

his thinking. Insofar as students see the Workstation as enhancing their powers of perception and
cognition, they will recognize science as empowering!

There is an inherent epistemology in our subdivision of scientific knowledge into
empirical/perceptual and theoretical/cognitive components. On this matter Fig. 2.52 should be
compared with Figure 5 in Hestenes (1992) and its discussion. This is not the place for a
philosophical analysis.

Empirical/Perceptual Interface
The perceptual interface is composed of windows for displaying and correlating different

types of data, organized into three processing levels, as follows:

I. Raw Data
(A) Image Window

Visual
Audio

(B) Instrument Panel
II. Data Display

(A) Graphical
(B) Tabular

III. Processed Data
(A) Statistical analysis
(B) Signal/image processing

The Image Window presents sensory data for direct observation and analysis by the user.
It is capable of presenting both visual and audio images. The visual images may be digitized
videos, animations of simulations from any standard source: camera, CD Rom., computer
programs, telecommunication. The Window will have a tool kit for manipulating images and
extracting data, such as measurements of speed and acceleration, for analysis.

The instrument panel is a window for displaying measured values from scientific
instruments, such as an odometer, a clock or a thermometer. A menu will provide options for
customizing the display, with choices of digital or analog displays and instrument icons
suggesting physical interpretations for the data.
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At the second level of processing, raw data from the image and instrument windows is
organized in Data Display windows for reference and analysis. Graphical windows are equipped
with tools for rescaling variables and otherwise manipulating graphical displays. In fact, we have
already completed the development and testing of a very powerful and flexible graphical window
as part of our MBL software (Thornton, 1989). For modeling purposes, our window is superior
to commercial graphing software. For example, it is capable of generating graphs in real time
from data collected by MBL sensors.

Our graphical window is linked to a tabular window for an alternate representation of
data in spread sheet form. In fact, all windows in the perceptual interface are coupled to support
coordinated multiple representations of data, including real time concurrent display of several
variables when appropriate. In particular, the real time generation of graphs can be synchronized
with visual images. This clarifies the semantic meaning of the graphs. Similarly, it is often of
interest to display an audio image synchronously with its sound spectrograph. The computer is
blessed with perfect memory, so all temporal records can be reviewed and analyzed at any
convenient speed.

The third level of processing includes tools for statistical analysis and signal/image
processing at various levels of sophistication. This level is not needed for elementary
applications of the Workstation.

Theoretical/Cognitive Interface
The theoretical interface gives the user access and control of a vast quantity of scientific

knowledge codified in Workstation software. The design problem of concern in this subsection is
the construction and manipulation of interface representations to make the structure of that
knowledge as self-evident and accessible as possible. The design of modeling tools to use the
knowledge effectively was discussed in Sec. 2.4.. The structure of knowledge is critically
dependent on the available tools, so a sharp separation of structure from tools is not to be
expected. We make the separation only for methodological convenience. In fact, the best way of
characterizing structure may be as a system of general tools for coordinating the use of specific
modeling tools.

Our first design task is to clearly distinguish generic structure common to all physical
theories from specific structure peculiar to particular theories and make this distinction obvious
and natural in the interface. The reason for this is that generic structure unifies scientific
knowledge and is transferable from one domain to another. There is an extensive field of
research on generic structure called systems theory. We will embed the insights of systems
theory into our interface design. We will design generic tools for characterizing the structure and
behavior of any physical system and supply the means for incorporating it into the structure of
specific models.

To cite an example which we intend eventually to work out in full detail: Electrical
circuits and heat engines are standard subjects in University physics. They are accompanied by
elaborate diagrams to help students understand how they work. What is not at all clear either
from the diagrams or the texts that go with them is that these subjects share a common central
theme – the storage and flow of energy. We will create representational tools that apply to both
subjects and so make their common elements explicit. In fact, these tools will include a variant of
the tool for representing scalar fields on particle trajectories, as discussed in section 2.4.

The generic structure of systems theory is reflected in the specific structure of scientific
theories. Physics consists of a network of overlapping theories, and students will discover this by
opening a THEORY MENU and exploring the contents. The selections available on the menu
include NEWTONIAN theory, ELECTROMAGNETIC theory and RELATIVITY theory. Each
theory defines a conceptual world which students can select with a mouse-click. For example,
the NEWTONIAN WORLD is defined by the system of laws displayed schematically in a dialog
box which appears when the Newtonian theory is selected (Fig. 2.53, adapted from Hestenes
1992). Note that the laws fall into three general categories which apply to every theory:
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Fig. 2.53.

THEORY DIALOG BOX OK
Cancel

NEWTONIAN THEORY DEFINES THE NEWTONIAN WORLD.

  ENTITIES: Particles and Bodies = {systems of particles}

  KINEMATICAL LAWS.

0th Every particle k has a definite position xk
with respect to a given reference frame.

Motion of the particle is represented by a
trajectory xk(t).

1st An inertial system is a reference system in which
 every free particle has a constant velocity.

  DYNAMICAL LAW

2nd In an inertial system,     Fk = mk

d 2xk

dt2

  INTERACTION LAWS

3rd F12 = −F21

4th Fk = Fkj
j =1

N

∑

5th F12 = F(x1 − x2 ,v1 − v2 )

kinematics, dynamics and interactions. For a detailed discussion of any law (following Hestenes,
1986, Chap. 9), the student clicks on the appropriate LAW button. The ZEROth LAW, defining
the concepts of space and time, is the most complex of the laws and the most fundamental,
because it is the foundation for measurement theory. Ironically, it is not even identified as a law
in standard textbooks. That is not a minor oversight, for the shift from Newtonian mechanics to
Relativistic mechanics is the consequence of a subtle alteration of the Zeroth law. Students are
able to discover such differences among physical theories by exploring the Theory Menu.

Most of the time the student will not be interested in exploring the structure of the
selected theory, but wishes to take the theory for granted. By clicking the OK button in the upper
right hand corner of the dialog box, the student accepts the Newtonian World and the box
disappears, clearing Desktop for modeling activities. The theory remains active behind the
scenes, however, by constraining what can be extracted from the other menus to conform to
Newtonian theory. Hence there is a  MODEL MENU offering the student a selection of
Newtonian MODEL TYPES, including PARTICLE, RIGID BODY, ELASTIC SOLID, IDEAL
FLUID, IDEAL GAS. A mouse-click on one of these starts the student on   a path through the
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stages of model development   (Hestenes 1987) guided by a sequence of dialog boxes and forced
choices. It begins with a dialog box asking the student to specify a set of OBJECT VARIABLES
such as mass and charge for a particle model or geometrical shape and moments of inertia for a
rigid body. TOOLS for constructing suitable graphical, diagrammatic and symbolic
representations are available, along with prompts to help students learn to use them effectively.
An INTERACTION MENU offers a classification of available SPECIFIC FORCE LAWS,
including both phenomenological and fundamental types, along with ancillary information about
them. Among other things, a PREFERENCE MENU enables the student to switch from a force
to a potential energy representation of interactions. To produce equations of motion for model
objects, the student must substitute suitable forces into the dynamical laws.

Modeling Task Manager
To coordinate the Empirical and Theoretical Interfaces and to manage complex

Workstation activities, a third interface is needed, the Modeling Task Manager (MTM) . For this
purpose, we need a systematic classification and analysis of modeling tasks to explicate and
systematize strategic and procedural knowledge involved. The highest objective of this project is
to incorporate such knowledge into the design of the MTM, where it will be of practical value to
users. By way of example, we describe two important activities that the MTM will be designed
to facilitate: semantic matching and recording/reporting.

Semantic matching
To span the semantic gap between theory and observation, we need tools that compare

theoretical models with observational data. The simplest kind of quantitative semantic matching
is curve fitting. Computer tools greatly facilitate this activity. On a window in the Theoretical
Interface a curve generated by a parametrized model can be displayed. Let this window be
transparent, so it can be overlaid on a data window in the Empirical Interface. The user then
varies the parameters to "eyeball" a best fit of the curve (hence, the model) to the data. The
"semantic matching tool" is designed to make obvious the role of units in the scaling required to
compare the model with data. The tool can be refined for quantitative matching using statistical
tools.

In a dynamic form of semantic matching, a model generated simulation of particle motion
is overlaid on a video of the object being modeled.

Recording/Reporting
The computer has an unmatched capability to record actions of the user in modeling

activities. Kaput (1992) notes two complementary types of record: (a) Records of prior states
called filmstrips, and (b) records of actions (that produced the state changes) called scripts. The
user can replay, analyze and edit the records to perfect the activity of interest. This could be
anything from a calculation to a proof of a theorem. As Kaput notes, editing a script is a kind of
"programming by doing." For repeated applications, a script can be assigned a command to
execute it as a single step.

Records are seldom of more than passing interest unless they are embedded into reports,
notebooks or portfolios which put them in a significant context. For constructing such reports,
the MTM provides access to general utilities such as a word processing system. In addition to
ordinary word processing, we plan to make available an interactive notebook that can function
(1) as an electronic curriculum guide for guided inquiry, (2) as a means of presenting tutorials,
including those introducing students to the workstation environment, and (3) as a means for
students to communicate findings to other students and to teachers.  For example, when used for
guided curriculum, the notebook could include text, graphics, questions with space for the
student to type an answer or draw a prediction, and interfaces to the modeling tools. Tools would
be started and automatically configured for the current use right from the notebook, thus acting
as extensions of the notebook environment.
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III. Toward an integrated software curriculum for all grade levels

The current computer revolution presents an unprecedented opportunity for curriculum
reform in science and mathematics. Computer infusion into classrooms is sure to continue at a
rapid rate, driven by steadily improving hardware at decreasing cost and by the hope for a
technological fix of educational problems. This trend is creating a "software vacuum" which will
be filled with "junk" software unless a clearly superior "software curriculum" is developed to
displace it. Since junk software does not address fundamental pedagogical issues, it will
exacerbate educational problems by diverting attention and resources. The result will be further
disillusionment with education and retrenchment in public support.

This impending software crisis can be averted if scientists, educators and software
developers collaborate on the development of a integrated math-science software curriculum
which is scientifically and pedagogically sound. We say "software curriculum" rather than
"curriculum software," because we see it as an agent for curriculum reform rather than an
enhancement of the standard curriculum. The aim is to build the curriculum across all grade
levels into an integrated system of software packages. This approach to curriculum reform is
potentially far more effective than the mere publication of authoritative curriculum standards and
recommendations, because software design can be more strictly controlled, and, riding the wave
of technological change, software can more easily penetrate bureaucratic and academic barriers
standing in the way of reform.

Little curriculum reform can be expected from stand-alone software packages, no matter
how brilliantly conceived. Without a software curriculum to guide adoptions, naive users, from
teachers to school boards, will be unable to distinguish between quality and junk software. Junk
software will be attractively packaged and vigorously marketed by commercial vendors. Most
will be offshoots of available commercial software rather than designed to satisfy well
considered pedagogical criteria. Beyond the difficulty of getting adopted in the schools, there is a
more serious limitation to stand-alone software.

The fragmentation of knowledge acquired by students is arguably the most serious failing
of the current math-science curriculum (di Sessa, 1988). Software packages designed for
coherent treatment of individual topics or courses will not suffice to rectify the problem.
Competence in science and mathematics involves complex cognitive skills requiring many years
and broad experience to develop. Therefore, an integrated software curriculum is needed to
foster math-science competence efficiently. At the very least, general agreement on conventions
and standards for human-computer interface design is needed to minimize the cognitive overhead
needed to move from one software package to another. Even more can be achieved through
cooperative research and development.

The software curriculum needs vertical integration across grade levels and horizontal
integration across subjects and disciplines. "Graded" software packages can be designed to
promote student cognitive development along a progression of competence levels. Competence
standards can be built into the graded software, so that proficiency with the software is a clear
measure of competence, and each software package contains clear specifications of prerequisite
knowledge.

Horizontal integration helps students see how powerful conceptual structures apply across
a variety of situations. Such experience is essential to promote knowledge transfer across the
boundaries of scientific domains. Indeed, the surest defense against befuddlement and despair
from the current information explosion is an appreciation of the coherence of scientific
knowledge.

An integrated math-science software curriculum cannot be achieved without a broad
consensus among its developers on design principles, guidelines and specifications which
promote integration without limiting the creativity of individual developers. The software
designs must be grounded in a coherent theory of scientific knowledge, including its use and
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acquisition. We have proposed an approach grounded in Modeling Theory which can be
summarized in the following cardinal design principle:

Designs of math-science instruction as well as software should be centered on
condeptual models and modeling.

We invite like-minded colleagues to join us in the immense and exciting task of integrated math-
science software design and development.

Acknowledgements: Thanks to Ibrahim Halloun for help in preparing the manuscript. This work
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