Oersted Medal Lecture 2002: Reforming the Mathematical Language of Physics (GA)

Abstract: The connection between physics teaching and research at its deepest level can be illuminated by Physics Education Research (PER). For students and scientists alike, what they know and learn about physics is profoundly shaped by the conceptual tools at their command. Physicists employ a miscellaneous assortment of mathematical tools in ways that contribute to a fragmentation of knowledge. We can do better! Research on the design and use of mathematical systems provides a guide for designing a unified mathematical language for the whole of physics that facilitates learning and enhances physical insight. This has produced a comprehensive language called Geometric Algebra, which I introduce with emphasis on how it simplifies and integrates classical and quantum physics. Introducing research-based reform into a conservative physics curriculum is a challenge for the emerging PER community. Join the fun!
Oersted Medal Lecture 2002: Reforming the Mathematical Language of Physics
(Am. J. Phys. 71 (2), February 2003, pp. 104--121).

Spacetime Physics with Geometric Algebra

This is the sequel paper to the Oersted Medal Lecture 2002, and is a synopsis for GA for relativity and quantum mechanics:
Abstract: This is an introduction to spacetime algebra (STA) as a unified mathematical language for physics. STA simplifies, extends and integrates the mathematical methods of classical, relativistic and quantum physics while elucidating geometric structure of the theory. For example, STA provides a single, matrix-free spinor method for rotational dynamics with applications from classical rigid body mechanics to relativistic quantum theory -- thus significantly reducing the mathematical and conceptual barriers between classical and quantum mechanics. The entire physics curriculum can be unified and simplified by adopting STA as the standard mathematical language. This would enable early infusion of spacetime physics and give it the prominent place it deserves in the curriculum.
SpaceTime Physics
(Am. J. Phys. 71 (6), June 2003, pp. 1--24).

  GC R&D | Home | Overview | Evolution | Intro | NFMP | UGC | STC | GA in QM | GC Gravity | CG | Books | Infer Calc | Modeling | Links | PDF