Velocity Composition

Previous section: Lorentz Transformations.

Next sectionActive Lorentz Transformations.


Velocity composition:

Let  X′ = X(τ)  and  X(τ)  represent the history of a particle with proper velocity

\[\Large{U'\,\,\, = \,\,\,{\gamma _{u'}}\,\left( {1\,\, + \,\,\frac{{{\bf{u'}}}}{c}} \right)\,\,\,\,\,\,\,\,\,\,\,\,{\rm{and}}\,\,\,\,\,\,\,\,\,\,\,\,U\,\,\, = \,\,\,{\gamma _u}\,\left( {1\,\, + \,\,\frac{{\bf{u}}}{c}} \right)}\]


in the two inertial systems.



Exercise: Derive and interpret the relativistic velocity composition law:  U′ = ṼU.

               Therefrom, derive the corresponding composition laws for time dilations and relative velocities:

\[\Large{{\gamma _{u'}}\,\,\, = \,\,\,{\gamma _u}{\gamma _v}\,\left( {1\,\, - \,\,\frac{{{\bf{u}} \cdot {\bf{v}}}}{{{c^2}}}} \right)\,\,,\,\,\,\,\,\,\,\,\,\,\,\,{\bf{u'}}\,\,\, = \,\,\,\frac{{{\bf{u}}\,\, - \,\,{\bf{v}}}}{{\,1\,\, - \,\,\frac{{{\bf{u}} \cdot {\bf{v}}}}{{{c^2}}}\,}}}\]

               (Click here for a solution to this exercise.)




Previous sectionLorentz Transformations.

Next section: Active Lorentz Transformations.


© David Hestenes 2005, 2014